UCAGenomiX related publications

Du to our strong expertise in "omics" experiments and in microRNAs topics we decided to separate into 3 categories the related publications into which the Functional genomics Platform of Nice-Sophia-Antipolis is involved :
  1. Expression studies (DNA microarrays and high-throughput sequencing experiments)
  2. MicroRNA studies
  3. Miscellaneous

Robbe-Sermesant Karine

 krobbe@ipmc.cnrs.fr
 04 93 95 77 90
 660 route des lucioles 06560 Valbonne - Sophia-Antipolis

11 publications found

1. RiboProfiling: a Bioconductor package for standard Ribo-seq pipeline processing.
F1000Res. 2016 Jun 9;5:1309. doi: 10.12688/f1000research.8964.1. eCollection 2016.
Popa A, Lebrigand K, Paquet A, Nottet N, Robbe-Sermesant K, Waldmann R, Barbry P
Institut de Pharmacologie Moleculaire et Cellulaire, University Nice Sophia Antipolis and CNRS, Sophia- Antipolis, 06560, France.

The ribosome profiling technique (Ribo-seq) allows the selective sequencing of translated RNA regions. Recently, the analysis of genomic sequences associated to Ribo-seq reads has been widely employed to assess their coding potential. These analyses led to the identification of differentially translated transcripts under different experimental conditions, and/or ribosome pausing on codon motifs. In the context of the ever-growing need for tools analyzing Ribo-seq reads, we have developed 'RiboProfiling', a new Bioconductor open-source package. 'RiboProfiling' provides a full pipeline to cover all key steps for the analysis of ribosome footprints. This pipeline has been implemented in a single R workflow. The package takes an alignment (BAM) file as input and performs ribosome footprint quantification at a transcript level. It also identifies footprint accumulation on particular amino acids or multi amino-acids motifs. Report summary graphs and data quantification are generated automatically. The package facilitates quality assessment and quantification of Ribo-seq experiments. Its implementation in Bioconductor enables the modeling and statistical analysis of its output through the vast choice of packages available in R. This article illustrates how to identify codon-motifs accumulating ribosome footprints, based on data from Escherichia coli.
Pubmed link : 27347386

2. MicroRNA target identification: lessons from hypoxamiRs.
Antioxid Redox Signal. 2014 Sep 10;21(8):1249-68. doi: 10.1089/ars.2013.5648. Epub 2014 Feb 3.
Bertero T, Robbe-Sermesant K, Le Brigand K, Ponzio G, Pottier N, Rezzonico R, Mazure NM, Barbry P, Mari B
Institut de Pharmacologie Moléculaire et Cellulaire (IPMC) , Centre National de la Recherche Scientifique, CNRS UMR 7275, Sophia Antipolis, France .

SIGNIFICANCE: MicroRNAs (miRNAs) are small noncoding RNAs that have emerged as key regulators of many physiological and pathological processes, including those relevant to hypoxia such as cancer, neurological dysfunctions, myocardial infarction, and lung diseases. RECENT ADVANCES: During the last 5 years, miRNAs have been shown to play a role in the regulation of the cellular response to hypoxia. The identification of several bona fide targets of these hypoxamiRs has underlined their pleiotropic functions and the complexity of the molecular rules directing miRNA::target transcript pairing. CRITICAL ISSUES: This review outlines the main in silico and experimental approaches used to identify the targetome of hypoxamiRs and presents new recent relevant methodologies for future studies. FUTURE DIRECTIONS: Since hypoxia plays key roles in many pathophysiological conditions, the precise characterization of regulatory hypoxamiRs networks will be instrumental both at a fundamental level and for their future potential therapeutic applications.
Pubmed link : 24111877

3. "Seed-Milarity" confers to hsa-miR-210 and hsa-miR-147b similar functional activity.
PLoS One. 2012;7(9):e44919. doi: 10.1371/journal.pone.0044919. Epub 2012 Sep 13.
Bertero T, Grosso S, Robbe-Sermesant K, Lebrigand K, Henaoui IS, Puissegur MP, Fourre S, Zaragosi LE, Mazure NM, Ponzio G, Cardinaud B, Barbry P, Rezzonico R, Mari B
Institut de Pharmacologie Moléculaire et Cellulaire-IPMC, Centre National de la Recherche Scientifique, CNRS UMR 7275, Sophia Antipolis, France.

Specificity of interaction between a microRNA (miRNA) and its targets crucially depends on the seed region located in its 5'-end. It is often implicitly considered that two miRNAs sharing the same biological activity should display similarity beyond the strict six nucleotide region that forms the seed, in order to form specific complexes with the same mRNA targets. We have found that expression of hsa-miR-147b and hsa-miR-210, though triggered by different stimuli (i.e. lipopolysaccharides and hypoxia, respectively), induce very similar cellular effects in term of proliferation, migration and apoptosis. Hsa-miR-147b only shares a "minimal" 6-nucleotides seed sequence with hsa-miR-210, but is identical with hsa-miR-147a over 20 nucleotides, except for one base located in the seed region. Phenotypic changes induced after heterologous expression of miR-147a strikingly differ from those induced by miR-147b or miR-210. In particular, miR-147a behaves as a potent inhibitor of cell proliferation and migration. These data fit well with the gene expression profiles observed for miR-147b and miR-210, which are very similar, and the gene expression profile of miR-147a, which is distinct from the two others. Bioinformatics analysis of all human miRNA sequences indicates multiple cases of miRNAs from distinct families exhibiting the same kind of similarity that would need to be further characterized in terms of putative functional redundancy. Besides, it implies that functional impact of some miRNAs can be masked by robust expression of miRNAs belonging to distinct families.
Pubmed link : 23028679

4. Distinct epithelial gene expression phenotypes in childhood respiratory allergy.
Eur Respir J. 2012 May;39(5):1197-205. Epub 2011 Oct 17.
Giovannini-Chami L, Marcet B, Moreilhon C, Chevalier B, Illie MI, Lebrigand K, Robbe-Sermesant K, Bourrier T, Michiels JF, Mari B, Crénesse D, Hofman P, de Blic J, Castillo L, Albertini M, Barbry P
CNRS and University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, 06560 Sophia Antipolis, France.

Epithelial cell contribution to the natural history of childhood allergic respiratory disease remains poorly understood. Our aims were to identify epithelial pathways that are dysregulated in different phenotypes of respiratory allergy. We established gene expression signatures of nasal brushings from children with dust mite-allergic rhinitis, associated or not associated with controlled or uncontrolled asthma. Supervised learning and unsupervised clustering were used to predict the different subgroups of patients and define altered signalling pathways. These profiles were compared with those of primary cultures of human nasal epithelial cells stimulated with either interleukin (IL)-4, IL-13, interferon (IFN)-α, IFN-β or IFN-γ, or during in vitro differentiation. A supervised method discriminated children with allergic rhinitis from healthy controls (prediction accuracy 91%), based on 61 transcripts, including 21 T-helper cell (Th) type 2-responsive genes. This method was then applied to predict children with controlled or uncontrolled asthma (prediction accuracy 75%), based on 41 transcripts: nine of them, which were down-regulated in uncontrolled asthma, are directly linked to IFN. This group also included GSDML, which is genetically associated with asthma. Our data revealed a Th2-driven epithelial phenotype common to all children with dust mite allergic rhinitis. It highlights the influence of epithelially expressed molecules on the control of asthma, in association with atopy and impaired viral response.
Pubmed link : 22005912

5. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway.
Nat Cell Biol. 2011 Jun;13(6):693-9. Epub 2011 May 22.
Marcet B, Chevalier B, Luxardi G, Coraux C, Zaragosi LE, Cibois M, Robbe-Sermesant K, Jolly T, Cardinaud B, Moreilhon C, Giovannini-Chami L, Nawrocki-Raby B, Birembaut P, Waldmann R, Kodjabachian L, Barbry P
CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, F06560 Sophia Antipolis, France.

Multiciliated cells lining the surface of some vertebrate epithelia are essential for various physiological processes, such as airway cleansing. However, the mechanisms governing motile cilia biosynthesis remain poorly elucidated. We identify miR-449 microRNAs as evolutionarily conserved key regulators of vertebrate multiciliogenesis. In human airway epithelium and Xenopus laevis embryonic epidermis, miR-449 microRNAs strongly accumulated in multiciliated cells. In both models, we show that miR-449 microRNAs promote centriole multiplication and multiciliogenesis by directly repressing the Delta/Notch pathway. We established Notch1 and its ligand Delta-like 1(DLL1) as miR-449 bona fide targets. Human DLL1 and NOTCH1 protein levels were lower in multiciliated cells than in surrounding cells, decreased after miR-449 overexpression and increased after miR-449 inhibition. In frog, miR-449 silencing led to increased Dll1 expression. Consistently, overexpression of Dll1 mRNA lacking miR-449 target sites repressed multiciliogenesis, whereas both Dll1 and Notch1 knockdown rescued multiciliogenesis in miR-449-deficient cells. Antisense-mediated protection of miR-449-binding sites of endogenous human Notch1 or frog Dll1 strongly repressed multiciliogenesis. Our results unravel a conserved mechanism whereby Notch signalling must undergo miR-449-mediated inhibition to permit differentiation of ciliated cell progenitors.
Pubmed link : 21602795

6. Impact of microRNA in normal and pathological respiratory epithelia.
Methods Mol Biol. 2011;741:171-91.
Giovannini-Chami L, Grandvaux N, Zaragosi LE, Robbe-Sermesant K, Marcet B, Cardinaud B, Coraux C, Berthiaume Y, Waldmann R, Mari B, Barbry P
CNRS, Université de Nice Sophia Antipolis, IPMC, UMR6097, Sophia Antipolis, France. chami@ipmc.cnrs.fr

Extensive sequencing efforts, combined with ad hoc bioinformatics developments, have now led to the identification of 1222 distinct miRNAs in human (derived from 1368 distinct genomic loci) and of many miRNAs in other multicellular organisms. The present chapter is aimed at describing a general experimental strategy to identify specific miRNA expression profiles and to highlight the functional networks operating between them and their mRNA targets, including several miRNAs deregulated in cystic fibrosis and during differentiation of airway epithelial cells.
Pubmed link : 21594785

7. MiRonTop: mining microRNAs targets across large scale gene expression studies
Bioinformatics. 2010 Oct 19
Le Brigand K, Robbe-Sermesant K, Mari B, Barbry P
CNRS, Institut de Pharmacologie Moleculaire et Cellulaire, UMR6097, 06560 Sophia-Antipolis, France.

SUMMARY: Current challenges in microRNA (miRNA) research are to improve the identification of in vivo mRNA targets and clarify the complex interplay existing between a specific miRNA and multiple biological networks. MiRonTop is an online java web tool that integrates DNA microarrays or high-throughput sequencing data to identify the potential implication of miRNAs on a specific biological system. It allows a rapid characterization of the most pertinent mRNA targets according to several existing miRNA target prediction approaches. It also provides useful representations of the enrichment scores according to the position of the target site along the 3'- UTR, where the contribution of the sites located in the vicinity of the stop codon and of the polyA tail can be clearly highlighted. It provides different graphs of miRNA enrichment associated with up- or down-regulated transcripts and different summary tables about selections of mRNA targets and their functional annotations by Gene Ontology. AVAILABILITY: http://www.microarray.fr:8080/miRonTop/index
Pubmed link : 20959382

8. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity.
Cell Death Differ. 2010 Oct 1.
Puissegur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K, Maurin T, Lebrigand K, Cardinaud B, Hofman V, Fourre S, Magnone V, Ricci JE, Pouyssegur J, Gounon P, Hofman P, Barbry P, Mari B
[1] Institut de Pharmacologie Moleculaire et Cellulaire, CNRS UMR6097, Sophia Antipolis, France [2] University of Nice Sophia-Antipolis, Nice, France.

Following the identification of a set of hypoxia-regulated microRNAs (miRNAs), recent studies have highlighted the importance of miR-210 and of its transcriptional regulation by the transcription factor hypoxia-inducible factor-1 (HIF-1). We report here that miR-210 is overexpressed at late stages of non-small cell lung cancer. Expression of miR-210 in lung adenocarcinoma A549 cells caused an alteration of cell viability associated with induction of caspase-3/7 activity. miR-210 induced a loss of mitochondrial membrane potential and the apparition of an aberrant mitochondrial phenotype. The expression profiling of cells overexpressing miR-210 revealed a specific signature characterized by enrichment for transcripts related to 'cell death' and 'mitochondrial dysfunction', including several subunits of the electron transport chain (ETC) complexes I and II. The transcript coding for one of these ETC components, SDHD, subunit D of succinate dehydrogenase complex (SDH), was validated as a bona fide miR-210 target. Moreover, SDHD knockdown mimicked miR-210-mediated mitochondrial alterations. Finally, miR-210-dependent targeting of SDHD was able to activate HIF-1, in line with previous studies linking loss-of-function SDH mutations to HIF-1 activation. miR-210 can thus regulate mitochondrial function by targeting key ETC component genes with important consequences on cell metabolism, survival and modulation of HIF-1 activity. These observations help explain contradictory data regarding miR-210 expression and its putative function in solid tumors.
Pubmed link : 20885442

9. miR-34b/miR-34c: a regulator of TCL1 expression in 11q- chronic lymphocytic leukaemia?
Leukemia. 2009 Nov;23(11):2174-7.
Cardinaud B, Moreilhon C, Marcet B, Robbe-Sermesant K, Lebrigand K, Mari B, Eclache V, Cymbalista F, Raynaud S, Barbry P
[1] CNRS, IPMC, UMR6097, Sophia Antipolis, France [2] Universite de Nice Sophia-Antipolis, IPMC, UMR6097, Sophia Antipolis, France [3] Universite Victor Segalen Bordeaux 2, EA 4135, Bordeaux, France E-mail: barbry@ipmc.cnrs.fr.


Pubmed link : 19536169

10. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal interactions.
PLoS One. 2009 Aug 24;4(8):e6718.
Pottier N, Maurin T, Chevalier B, Puissegur MP, Lebrigand K, Robbe-Sermesant K, Bertero T, Lino Cardenas CL, Courcot E, Rios G, Fourre S, Lo-Guidice JM, Marcet B, Cardinaud B, Barbry P, Mari B
CNRS, Institut de Pharmacologie Moleculaire et Cellulaire, UMR6097, Sophia Antipolis, France.

BACKGROUND: Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-alpha, IL-1beta and TGF-beta. METHODOLOGY/PRINCIPAL FINDINGS: MiR-155 was significantly induced by inflammatory cytokines TNF-alpha and IL-1beta while it was down-regulated by TGF-beta. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to "cell to cell signalling", "cell morphology" and "cellular movement". This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3'-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest a physiological function of miR-155 in lung fibroblasts. Altogether, this study implicates this miRNA in the regulation by mesenchymal cells of surrounding lung epithelium, making it a potential key player during tissue injury.
Pubmed link : 19701459

11. A comparative analysis of perturbations caused by a gene knockout, a dominant negative allele, and a set of peptide aptamers.
Mol Cell Proteomics. 2007 Sep 4;
Abed N, Bickle M, Mari B, Schapira M, Sanjuan-Espana R, Robbe-Sermesant K, Moncorge O, Mouradian-Garcia S, Barbry P, Rudkin BB, Fauvarque MO, Michaud-Soret I, Colas P
CNRS UPS 2682, Station Biologique, Roscoff cedex 29682.

The study of protein function mostly relies on perturbing regulatory networks by acting upon protein expression levels or using transdominant negative agents. Here, we used the E.coli global transcription regulator Fur (ferric uptake regulator) as a case study to compare the perturbations exerted by a gene knockout, the expression of a dominant negative allele of a gene and the expression of peptide aptamers that bind a gene product. These three perturbations caused phenotypes that differed quantitatively and qualitatively from one another. The Fur peptide aptamers inhibited the activity of their target to various extents and reduced the virulence of a pathogenic E.coli strain in Drosophila. A genome-wide transcriptome analysis revealed that the "penetrance" of a peptide aptamer was comparable to that of a dominant-negative allele but lower than the "penetrance" of the gene knockout. Our work shows that comparative analysis of phenotypic and transcriptome responses to different types of perturbation can help decipher complex regulatory networks that control various biological processes.
Pubmed link : 17785351