UCAGenomiX related publications

Du to our strong expertise in "omics" experiments and in microRNAs topics we decided to separate into 3 categories the related publications into which the Functional genomics Platform of Nice-Sophia-Antipolis is involved :
  1. Expression studies (DNA microarrays and high-throughput sequencing experiments)
  2. MicroRNA studies
  3. Miscellaneous

Puissegur Marie-Pierre

 puissegur@ipmc.cnrs.fr
 04 93 95 77 90
 660 route des lucioles 06560 Valbonne - Sophia-Antipolis

6 publications found

1. "Seed-Milarity" confers to hsa-miR-210 and hsa-miR-147b similar functional activity.
PLoS One. 2012;7(9):e44919. doi: 10.1371/journal.pone.0044919. Epub 2012 Sep 13.
Bertero T, Grosso S, Robbe-Sermesant K, Lebrigand K, Henaoui IS, Puissegur MP, Fourre S, Zaragosi LE, Mazure NM, Ponzio G, Cardinaud B, Barbry P, Rezzonico R, Mari B
Institut de Pharmacologie Moléculaire et Cellulaire-IPMC, Centre National de la Recherche Scientifique, CNRS UMR 7275, Sophia Antipolis, France.

Specificity of interaction between a microRNA (miRNA) and its targets crucially depends on the seed region located in its 5'-end. It is often implicitly considered that two miRNAs sharing the same biological activity should display similarity beyond the strict six nucleotide region that forms the seed, in order to form specific complexes with the same mRNA targets. We have found that expression of hsa-miR-147b and hsa-miR-210, though triggered by different stimuli (i.e. lipopolysaccharides and hypoxia, respectively), induce very similar cellular effects in term of proliferation, migration and apoptosis. Hsa-miR-147b only shares a "minimal" 6-nucleotides seed sequence with hsa-miR-210, but is identical with hsa-miR-147a over 20 nucleotides, except for one base located in the seed region. Phenotypic changes induced after heterologous expression of miR-147a strikingly differ from those induced by miR-147b or miR-210. In particular, miR-147a behaves as a potent inhibitor of cell proliferation and migration. These data fit well with the gene expression profiles observed for miR-147b and miR-210, which are very similar, and the gene expression profile of miR-147a, which is distinct from the two others. Bioinformatics analysis of all human miRNA sequences indicates multiple cases of miRNAs from distinct families exhibiting the same kind of similarity that would need to be further characterized in terms of putative functional redundancy. Besides, it implies that functional impact of some miRNAs can be masked by robust expression of miRNAs belonging to distinct families.
Pubmed link : 23028679

2. B-cell regulator of immunoglobulin heavy chain transcription (Bright)/ARID3a is a direct target of the oncomir microRNA-125b in progenitor B-cells.
Leukemia. 2012 Apr 3. doi: 10.1038/leu.2012.95.
Puissegur MP, Eichner R, Quelen C, Coyaud E, Mari B, Lebrigand K, Broccardo C, Nguyen-Khac F, Bousquet M, Brousset P
1] Institut National de la Sante et de la Recherche Medicale, U563, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France [2] Universite Paul Sabatier, Toulouse, France.

B-cell acute lymphoblastic leukemia (B-ALL) is often associated with chromosomal translocations leading to the deregulation of proto-oncogenes. MicroRNAs can also be affected by chromosomal alterations and thus contribute to carcinogenesis. The microRNA miR-125b-1 is over-expressed in B-ALL cases with the t(11;14)(q24;q34) translocation, therefore we sought to determine the role of this microRNA in B-cell fate. We used murine pre-BI cells alongside murine and human leukemic B-cell lines to show that miR-125b expression enhances proliferation by targeting Bright/ARID3a, an activator of immunoglobulin heavy-chain transcription. Accordingly, this target gene was down-regulated in B-ALL patients with the t(11;14)(q24;q34) translocation. Repression of Bright/ARID3A blocked differentiation and conferred a survival advantage to Ba/F3 cells under IL3 starvation. In addition, over-expression of miR-125b protected pre-BI and leukemic B-cell lines from apoptosis through blockade of caspase activation via a mechanism that was independent of p53 and BAK1. In summary, miR-125b can act as an oncogene in B-ALL by targeting ARID3a and mediating its repression, thus leading to a blockage in differentiation, increased proliferation and inhibition of apoptosis.Leukemia accepted article preview online, 3 April 2012; doi:10.1038/leu.2012.95.
Pubmed link : 22469780

3. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity.
Cell Death Differ. 2010 Oct 1.
Puissegur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K, Maurin T, Lebrigand K, Cardinaud B, Hofman V, Fourre S, Magnone V, Ricci JE, Pouyssegur J, Gounon P, Hofman P, Barbry P, Mari B
[1] Institut de Pharmacologie Moleculaire et Cellulaire, CNRS UMR6097, Sophia Antipolis, France [2] University of Nice Sophia-Antipolis, Nice, France.

Following the identification of a set of hypoxia-regulated microRNAs (miRNAs), recent studies have highlighted the importance of miR-210 and of its transcriptional regulation by the transcription factor hypoxia-inducible factor-1 (HIF-1). We report here that miR-210 is overexpressed at late stages of non-small cell lung cancer. Expression of miR-210 in lung adenocarcinoma A549 cells caused an alteration of cell viability associated with induction of caspase-3/7 activity. miR-210 induced a loss of mitochondrial membrane potential and the apparition of an aberrant mitochondrial phenotype. The expression profiling of cells overexpressing miR-210 revealed a specific signature characterized by enrichment for transcripts related to 'cell death' and 'mitochondrial dysfunction', including several subunits of the electron transport chain (ETC) complexes I and II. The transcript coding for one of these ETC components, SDHD, subunit D of succinate dehydrogenase complex (SDH), was validated as a bona fide miR-210 target. Moreover, SDHD knockdown mimicked miR-210-mediated mitochondrial alterations. Finally, miR-210-dependent targeting of SDHD was able to activate HIF-1, in line with previous studies linking loss-of-function SDH mutations to HIF-1 activation. miR-210 can thus regulate mitochondrial function by targeting key ETC component genes with important consequences on cell metabolism, survival and modulation of HIF-1 activity. These observations help explain contradictory data regarding miR-210 expression and its putative function in solid tumors.
Pubmed link : 20885442

4. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal interactions.
PLoS One. 2009 Aug 24;4(8):e6718.
Pottier N, Maurin T, Chevalier B, Puissegur MP, Lebrigand K, Robbe-Sermesant K, Bertero T, Lino Cardenas CL, Courcot E, Rios G, Fourre S, Lo-Guidice JM, Marcet B, Cardinaud B, Barbry P, Mari B
CNRS, Institut de Pharmacologie Moleculaire et Cellulaire, UMR6097, Sophia Antipolis, France.

BACKGROUND: Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-alpha, IL-1beta and TGF-beta. METHODOLOGY/PRINCIPAL FINDINGS: MiR-155 was significantly induced by inflammatory cytokines TNF-alpha and IL-1beta while it was down-regulated by TGF-beta. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to "cell to cell signalling", "cell morphology" and "cellular movement". This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3'-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest a physiological function of miR-155 in lung fibroblasts. Altogether, this study implicates this miRNA in the regulation by mesenchymal cells of surrounding lung epithelium, making it a potential key player during tissue injury.
Pubmed link : 19701459

5. MicroRNAs and lung cancer: new oncogenes and tumor suppressors, new prognostic factors and potential therapeutic targets.
Curr Med Chem. 2009;16(9):1047-61.
Ortholan C, Puissegur MP, Ilie M, Barbry P, Mari B, Hofman P
Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice cedex 02, France.

MicroRNAs (miRNAs) are small non-protein-coding RNA that negatively control mRNA expression at a post-transcriptional level. They regulate various cellular functions and bioinformatic data suggest that they collectively control about 30% of human mRNAs. MiRNAs have been recently implicated in several carcinogenic processes, where they can act either as oncogenes or as tumor suppressors. This is the case in lung cancer, i.e. the leading cause of cancer deaths in Western countries, in which about 40-45 miRNAs have been found to be aberrantly expressed, thereby constituting a specific miRNA signature. Some of these miRNAs can play an important role in lung carcinogenesis. Indeed, some transcripts of the let-7 family that are significantly down-regulated in lung tumors have been identified as tumor suppressors through their ability to control several oncogenic pathways, including the RAS pathway. Identification of a growing number of other potential oncogenic or tumor suppressor miRNAs in lung cancers is in constant progress. Recent evidence supports the use of specific miRNA signatures to predict clinical outcome. This review aims to report the current knowledge about the role of miRNAs in lung cancer carcinogenesis, their potential for improving diagnosis and prognosis and their impact on future therapeutic strategies.
Pubmed link : 19275611

6. Mycobacterial lipomannan induces granuloma macrophage fusion via a TLR2-dependent, ADAM9- and beta1 integrin-mediated pathway.
J Immunol. 2007 Mar 1;178(5):3161-9.
Puissegur MP, Lay G, Gilleron M, Botella L, Nigou J, Marrakchi H, Mari B, Duteyrat JL, Guerardel Y, Kremer L, Barbry P, Puzo G, Altare F
Laboratory of Molecular Physiology of Mycobacterial Granulomas, Department of Molecular Mechanisms of Mycobacterial Infections, Institut de Pharmacologie et Biologie Structurale, CNRS/UMR 5089, 205 Route de Narbonne, Toulouse, France.

Tuberculous granulomas are the sites of interaction between the host response and the tubercle bacilli within infected individuals. They mainly consist of organized aggregations of lymphocytes and macrophages (Mf). A predominant role of mycobacterial envelope glycolipids in granulomas formation has been recently emphasized, yet the signaling events interfering with granuloma cell differentiation remain elusive. To decipher this molecular machinery, we have recently developed an in vitro human model of mycobacterial granulomas. In this study, we provide evidence that the mycobacterial proinflammatory phosphatidyl-myo-inositol mannosides and lipomannans (LM), as well as the anti-inflammatory lipoarabinomannan induce granuloma formation, yet only the proinflammatory glycolipids induce the fusion of granuloma Mf into multinucleated giant cells (MGC). We also demonstrate that LM induces large MGC resembling those found in vivo within the granulomas of tuberculosis patients, and that this process is mediated by TLR2 and is dependent on the beta(1) integrin/ADAM9 cell fusion machinery. Our results demonstrate for the first time that the Mf differentiation stage specifically occurring within granulomatous structures (i.e., MGC formation) is triggered by mycobacterial envelope glycolipids, which are capable of inducing the cell fusion machinery. This provides the first characterization of the ontogeny of human granuloma MGC, thus resulting in a direct modulation by a particular mycobacterial envelope glycolipid of the differentiation process of granuloma Mf.
Pubmed link : 17312164