Plateforme de génomique, IPMC UMR7275
660 Route des Lucioles, SOPHIA ANTIPOLIS, 06560 VALBONNE
tél: 04-93-95-77-77, fax: 04-93-95-77-08

Expertise

La plateforme de génomique fonctionnelle de Nice Sophia Antipolis existe depuis 1999. Initialement orientée vers la conception, la fabrication et l'analyse de puces à ADN, elle a contribué à ouvrir cette nouvelle technologie à une large communauté, mettant à cette occasion en place un système d'information performant (Mediante), capable de gérer de grandes masses de données, et fonctionnant en production depuis plus de 10 ans.

Tout en fournissant encore aujourd'hui un service d'analyse de puces à ADN s'appuyant sur la technologie développée par Agilent, son activité s'est principalement réorientée vers des services de séquencage à haut-débit (Illumina NextSeq500), offrant dans ce contexte de nombreux types d'analyses des acides nucléiques, et une capacité pour analyser de grandes collections d'échantillons, y compris au niveau de la cellule unique. L'activité de routine concerne des applications comme le RNA-seq, le smallRNA-seq, le CHiP-seq, le CLIP-seq, le reséquencage, mais des projets spécifiques peuvent aussi etre mis en place dans des domaines moins standards, comme le séquencage de novo de génomes, ou certains protocoles particuliers : riboSeq, capSeq,... La plateforme se compose de 4 ingénieurs wet lab et de 4 bio-informaticiens.

Equipements

  1. Pré-séquencage : Nanodrop, Bioanalyzer, Qubit, CovarisS2, Ion Chef, NeoPrep, Blue pippin
  2. Analyse Single Cell : 10x Genomics Chromium, Fluidigm C1, Fluidigm Biomark
  3. Séquencage : NextSeq500 Illumina, MinION et PromethION Oxford Nanopore Technology, Chromium 10X Genomics
  4. Puces à ADN : High-Resolution Microarray Scanner Agilent, Station Affymetrix


Les résultats sont stockés automatiquement sur le portail d'informations de la plateforme Mediante. Cela concerne notamment les fichiers .BAM d'alignement, les fichiers .BW de couverture et l'ensemble des fichiers de l'analyse secondaire et des analyses statistiques conduites en partenariat avec le collaborateur. Sur demande l'ensemble des données brutes sont également mises à disposition et une aide est fournit pour la soumission des données vers la base de données publiques GEO (Gene Expression Omnibus).

Related publications




Moreilhon Chimene

  moreilhon@ipmc.cnrs.fr
 04 93 95 77 90
 660 route des lucioles 06560 Valbonne - Sophia-Antipolis

13 publications found

1. Distinct epithelial gene expression phenotypes in childhood respiratory allergy., Eur Respir J. 2012 May;39(5):1197-205. Epub 2011 Oct 17. (Pubmed: 22005912)
Giovannini-Chami L, Marcet B, Moreilhon C, Chevalier B, Illie MI, Lebrigand K, Robbe-Sermesant K, Bourrier T, Michiels JF, Mari B, Crénesse D, Hofman P, de Blic J, Castillo L, Albertini M, Barbry P

Epithelial cell contribution to the natural history of childhood allergic respiratory disease remains poorly understood. Our aims were to identify epithelial pathways that are dysregulated in different phenotypes of respiratory allergy. We established gene expression signatures of nasal brushings from children with dust mite-allergic rhinitis, associated or not associated with controlled or uncontrolled asthma. Supervised learning and unsupervised clustering were used to predict the different subgroups of patients and define altered signalling pathways. These profiles were compared with those of primary cultures of human nasal epithelial cells stimulated with either interleukin (IL)-4, IL-13, interferon (IFN)-α, IFN-β or IFN-γ, or during in vitro differentiation. A supervised method discriminated children with allergic rhinitis from healthy controls (prediction accuracy 91%), based on 61 transcripts, including 21 T-helper cell (Th) type 2-responsive genes. This method was then applied to predict children with controlled or uncontrolled asthma (prediction accuracy 75%), based on 41 transcripts: nine of them, which were down-regulated in uncontrolled asthma, are directly linked to IFN. This group also included GSDML, which is genetically associated with asthma. Our data revealed a Th2-driven epithelial phenotype common to all children with dust mite allergic rhinitis. It highlights the influence of epithelially expressed molecules on the control of asthma, in association with atopy and impaired viral response.


2. MiR-129-5p is required for histone deacetylase inhibitor-induced cell death in thyroid cancer cells., Endocr Relat Cancer. 2011 Nov 14;18(6):711-9. doi: 10.1530/ERC-10-0257. Print 2011 Dec. (Pubmed: 21946411)
Brest P, Lassalle S, Hofman V, Bordone O, Gavric Tanga V, Bonnetaud C, Moreilhon C, Rios G, Santini J, Barbry P, Svanborg C, Mograbi B, Mari B, Hofman P

The molecular mechanism responsible for the antitumor activity of histone deacetylase inhibitors (HDACi) remains elusive. As HDACi have been described to alter miRNA expression, the aim of this study was to characterize HDACi-induced miRNAs and to determine their functional importance in the induction of cell death alone or in combination with other cancer drugs. Two HDACi, trichostatin A and vorinostat, induced miR-129-5p overexpression, histone acetylation and cell death in BCPAP, TPC-1, 8505C, and CAL62 cell lines and in primary cultures of papillary thyroid cancer (PTC) cells. In addition, miR-129-5p alone was sufficient to induce cell death and knockdown experiments showed that expression of this miRNA was required for HDACi-induced cell death. Moreover, miR-129-5p accentuated the anti-proliferative effects of other cancer drugs such as etoposide or human α-lactalbumin made lethal for tumor cells (HAMLET). Taken together, our data show that miR-129-5p is involved in the antitumor activity of HDACi and highlight a miRNA-driven cell death mechanism.


3. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway., Nat Cell Biol. 2011 Jun;13(6):693-9. Epub 2011 May 22. (Pubmed: 21602795)
Marcet B, Chevalier B, Luxardi G, Coraux C, Zaragosi LE, Cibois M, Robbe-Sermesant K, Jolly T, Cardinaud B, Moreilhon C, Giovannini-Chami L, Nawrocki-Raby B, Birembaut P, Waldmann R, Kodjabachian L, Barbry P

Multiciliated cells lining the surface of some vertebrate epithelia are essential for various physiological processes, such as airway cleansing. However, the mechanisms governing motile cilia biosynthesis remain poorly elucidated. We identify miR-449 microRNAs as evolutionarily conserved key regulators of vertebrate multiciliogenesis. In human airway epithelium and Xenopus laevis embryonic epidermis, miR-449 microRNAs strongly accumulated in multiciliated cells. In both models, we show that miR-449 microRNAs promote centriole multiplication and multiciliogenesis by directly repressing the Delta/Notch pathway. We established Notch1 and its ligand Delta-like 1(DLL1) as miR-449 bona fide targets. Human DLL1 and NOTCH1 protein levels were lower in multiciliated cells than in surrounding cells, decreased after miR-449 overexpression and increased after miR-449 inhibition. In frog, miR-449 silencing led to increased Dll1 expression. Consistently, overexpression of Dll1 mRNA lacking miR-449 target sites repressed multiciliogenesis, whereas both Dll1 and Notch1 knockdown rescued multiciliogenesis in miR-449-deficient cells. Antisense-mediated protection of miR-449-binding sites of endogenous human Notch1 or frog Dll1 strongly repressed multiciliogenesis. Our results unravel a conserved mechanism whereby Notch signalling must undergo miR-449-mediated inhibition to permit differentiation of ciliated cell progenitors.


4. A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations., J Lipid Res. 2010 Aug;51(8):2352-61 (Pubmed: 20410018)
Massiera F, Barbry P, Guesnet P, Joly A, Luquet S, Moreilhon-Brest C, Mohsen-Kanson T, Amri EZ, Ailhaud G

The prevalence of obesity has steadily increased over the last few decades. During this time, populations of industrialized countries have been exposed to diets rich in fat with a high content of linoleic acid and a low content of alpha-linolenic acid compared with recommended intake. To assess the contribution of dietary fatty acids, male and female mice fed a high-fat diet (35% energy as fat, linoleic acid:alpha-linolenic acid ratio of 28) were mated randomly and maintained after breeding on the same diet for successive generations. Offspring showed, over four generations, a gradual enhancement in fat mass due to combined hyperplasia and hypertrophy with no change in food intake. Transgenerational alterations in adipokine levels were accompanied by hyperinsulinemia. Gene expression analyses of the stromal vascular fraction of adipose tissue, over generations, revealed discrete and steady changes in certain important players, such as CSF3 and Nocturnin. Thus, under conditions of genome stability and with no change in the regimen over four generations, we show that a Western-like fat diet induces a gradual fat mass enhancement, in accordance with the increasing prevalence of obesity observed in humans.


5. miR-34b/miR-34c: a regulator of TCL1 expression in 11q- chronic lymphocytic leukaemia?, Leukemia. 2009 Nov;23(11):2174-7. (Pubmed: 19536169)
Cardinaud B, Moreilhon C, Marcet B, Robbe-Sermesant K, Lebrigand K, Mari B, Eclache V, Cymbalista F, Raynaud S, Barbry P


6. Gene expression profiling of human liver transplants identifies an early transcriptional signature associated with initial poor graft function., Am J Transplant. 2008 Jun;8(6):1221-36. (Pubmed: 18522548)
Defamie V, Cursio R, Le Brigand K, Moreilhon C, Saint-Paul MC, Laurens M, Crenesse D, Cardinaud B, Auberger P, Gugenheim J, Barbry P, Mari B

Liver ischemia-reperfusion injury occurring in orthotopic liver transplantation (OLT) may be responsible for early graft failure. Molecular mechanisms underlying initial poor graft function (IPGF) have been poorly documented in human. The purpose of this study was to identify the major transcriptional alterations occurring in human livers during OLT. Twenty-one RNA extracts derived from liver transplant biopsies taken after graft reperfusion were compared with 7 RNA derived from normal control livers. Three hundred seventy-one genes were significantly modulated and classified in molecular pathways relevant to liver metabolism, inflammatory response, cell proliferation and liver protection. Grafts were then subdivided into two groups based on their peak levels of serum aspartate amino transferase within 72 h after OLT (group 1, non-IPGF: 14 patients; group 2, IPGF: 7 patients). The two corresponding data sets were compared using a supervised prediction method. A new set of genes able to correctly classify 71% of the patients was defined. These genes were functionally associated with oxidative stress, inflammation and inhibition of cell proliferation. This study provides a comprehensive picture of the transcriptional events associated with human OLT and IPGF. We anticipate that such alterations provide a framework for the elucidation of the molecular mechanisms leading to IPGF.


7. Gene expression profiling in human gastric mucosa infected with Helicobacter pylori., Mod Pathol. 2007 Sep;20(9):974-89. Epub 2007 Jul 20. (Pubmed: 17643099)
Hofman VJ, Moreilhon C, Brest PD, Lassalle S, Le Brigand K, Sicard D, Raymond J, Lamarque D, Hebuterne XA, Mari B, Barbry PJ, Hofman PM

Pathogenic mechanisms associated with Helicobacter pylori infection enhance susceptibility of the gastric epithelium to carcinogenic conversion. We have characterized the gene expression profiles of gastric biopsies from 69 French Caucasian patients, of which 43 (62%) were infected with H. pylori. The bacterium was detected in 27 of the 42 antral biopsies examined and in 16 of the 27 fundic biopsies. Infected biopsies were selected for the presence of chronic active gastritis, in absence of metaplasia and dysplasia of the gastric mucosa. Infected antral and fundic biopsies exhibited distinct transcriptional responses. Altered responses were linked with: (1) the extent of polymorphonuclear leukocyte infiltration, (2) bacterial density, and (3) the presence of the virulence factors vacA, babA2, and cagA. Robust modulation of transcripts associated with Toll-like receptors, signal transduction, the immune response, apoptosis, and the cell cycle was consistent with expected responses to Gram-negative bacterial infection. Altered expression of interferon-regulated genes (IFITM1, IRF4, STAT6), indicative of major histocompatibility complex (MHC) II-mediated and Th1-specific responses, as well as altered expression of GATA6, have previously been described in precancerous states. Upregulation of genes abundantly expressed in cancer tissues (UBD, CXCL13, LY96, MAPK8, MMP7, RANKL, CCL18) or in stem cells (IFITM1 and WFDC2) may reveal a molecular switch towards a premalignant state in infected tissues. Tissue microarray analysis of a large number of biopsies, which were either positive or negative for the cag-A virulence factor, when compared to each other and to noninfected controls, confirmed observed gene alterations at the protein level, for eight key transcripts. This study provides 'proof-of-principle' data for identifying molecular mechanisms driving H. pylori-associated carcinogenesis before morphological evidence of changes along the neoplastic progression pathway.Modern Pathology (2007) 20, 974-989; doi:10.1038/modpathol.3800930; published online 20 July 2007.


8. Transcriptional signature of epidermal keratinocytes subjected to in vitro scratch wounding, reveals selective roles for ERK1/2, P38 and PI3K signalling pathways., J Biol Chem. 2007 May 18;282(20):15090-102. (Pubmed: 17363378)
Fitsialos G, Chassot AA, Turchi L, Dayem MA, Lebrigand K, Moreilhon C, Meneguzzi G, Busca R, Mari B, Barbry P, Ponzio G

Covering denuded dermal surfaces after injury requires migration, proliferation and differentiation of skin keratinocytes. To clarify the major traits controlling these intermingled biological events, we surveyed the genomic modifications occurring during the course of a scratch wound closure of cultured human keratinocytes. Using a DNA microarray approach, we report the identification of 161 new markers of epidermal repair. Expression data, combined with functional analysis performed with specific inhibitors of ERK, p38[MAPK] and PI3 kinases, demonstrate that kinase pathways exert very selective functions by precisely controlling the expression of specific genes. Inhibition of the ERK pathway totally blocks the wound closure and inactivates many early transcription factors and EGF-type growth factors. P38[MAPK] inhibition only delays "healing", probably in line with the control of genes involved in the propagation of injury-initiated signalling. In contrast, PI3 kinase inhibition accelerates the scratch closure and potentiates the scratch-dependent stimulation of three genes related to epithelial cell transformation, namely HAS3, HBEGF and Ets1. Our results define in vitro human keratinocyte wound closure as a repair process resulting from a fine balance between positive signals controlled by ERK and p38[MAPK], and negative ones triggered by PI3 kinase. The perturbation of any of these pathways might lead to dysfunction in the healing process, similar to those observed in pathological wounding phenotypes, such as hypertrophic scars or keloids.


9. An open-access long oligonucleotide microarray resource for analysis of the human and mouse transcriptomes., Nucleic Acids Res. 2006 Jul 19;34(12):e87 (Pubmed: 17384016)
Le Brigand K, Russell R, Moreilhon C, Rouillard JM, Jost B, Amiot F, Magnone V, Bole-Feysot C, Rostagno P, Virolle V, Defamie V, Dessen P, Williams G, Lyons P, Rios G, Mari B, Gulari E, Kastner P, Gidrol X, Freeman TC, Barbry P

Two collections of oligonucleotides have been designed for preparing pangenomic human and mouse microarrays. A total of 148,993 and 121,703 oligonucleotides were designed against human and mouse transcripts. Quality scores were created in order to select 25,342 human and 24,109 mouse oligonucleotides. They correspond to: (i) a BLAST-specificity score; (ii) the number of expressed sequence tags matching each probe; (iii) the distance to the 3' end of the target mRNA. Scores were also used to compare in silico the two microarrays with commercial microarrays. The sets described here, called RNG/MRC collections, appear at least as specific and sensitive as those from the commercial platforms. The RNG/MRC collections have now been used by an Anglo-French consortium to distribute more than 3500 microarrays to the academic community. Ad hoc identification of tissue-specific transcripts and a approximately 80% correlation with hybridizations performed on Affymetrix GeneChiptrade mark suggest that the RNG/MRC microarrays perform well. This work provides a comprehensive open resource for investigators working on human and mouse transcriptomes, as well as a generic method to generate new microarray collections in other organisms. All information related to these probes, as well as additional information about commercial microarrays have been stored in a freely-accessible database called MEDIANTE.


10. Live Staphylococcus aureus and bacterial soluble factors induce different transcriptional responses in human airway cells., Physiol Genomics. 2005 Feb 10;20(3):244-55. Epub 2004 Dec 14.Click here to read (Pubmed: 15598879)
Moreilhon C, Gras D, Hologne C, Bajolet O, Cottrez F, Magnone V, Merten M, Groux H, Puchelle E, Barbry P

To characterize the response of respiratory epithelium to infection by Staphylococcus aureus (S. aureus), human airway cells were incubated for 1 to 24 h with a supernatant of a S. aureus culture (bacterial supernatant), then profiled with a pangenomic DNA microarray. Because an upregulation of many genes was noticed around 3 h, three independent approaches were then used to characterize the host response to a 3-h contact either with bacterial supernatant or with live bacteria: 1) a DNA microarray containing 4,200 sequence-verified probes, 2) a semiquantitative RT-PCR with a set of 537 pairs of validated primers, or 3) ELISA assay of IL-8, IL-6, TNFalpha, and PGE(2). Among others, Fos, Jun, and EGR-1 were upregulated by the bacterial supernatant and by live bacteria. Increased expression of bhlhb2 and Mig-6, promoter regions which harbor HIF responding elements, was explained by an increased expression of the HIF-1alpha protein. Activation of the inducible form of cyclooxygenase, COX-2, and of the interleukins IL-1, IL-6, and IL-8, as well as of the NF-kappaB pathway, was observed preferentially in cells in contact with bacterial supernatant. Early infection was characterized by an upregulation of anti-apoptotic genes and a downregulation of pro-apoptotic genes. This correlated with a necrotic, rather than apoptotic cell death. Overall, this first global description of an airway epithelial infection by S. aureus demonstrates a larger global response to bacterial supernatant (in term of altered genes and variation factors) than to exponentially growing live bacteria.


11. Escherichia coli cytotoxic necrotizing factor 1 inhibits intestinal epithelial wound healing in vitro after mechanical injury., Infect Immun. 2004 Oct;72(10):5733-40. (Pubmed: 15385472)
Brest P, Turchi L, Le'Negrate G, Berto F, Moreilhon C, Mari B, Ponzio G, Hofman P

Cytotoxic necrotizing factor type 1 (CNF1) from Escherichia coli activates the small GTP-binding proteins of the Rho family (Rho, Rac, and Cdc42) by catalyzing their deamidation at a specific glutamine residue. Since RhoA, Rac, and Cdc42 play a pivotal role in cell migration during the early phase of wound repair, we investigated whether CNF1 was able to interfere with wound healing in intestinal epithelial monolayers (T84 cells). After mechanical injury, we found that CNF1 blocks epithelial wound repair within 48 h. This effect was characterized by cell elongation and filopodium formation on the leading edge, in association with permanent phosphorylation of the focal adhesion kinase (FAK) via Rho activation. Moreover, inhibition of Rho kinase with Y-27632 decreased CNF1-mediated permanent FAK phosphorylation, leading to complete restitution of wound repair within 24 h. In addition, we found that CNF1 induced upregulation of mitogen-activated protein kinases (MAPK) activation. Moreover, activation of Rac and MAPK by CNF1 increased matrix metalloproteinase 9 expression in wounded T84 monolayers. Taken together, these results provide evidence that CNF1 strongly impairs intestinal epithelial wound healing.


12. Coordinated regulation of genes for secretion in tobacco at late developmental stages: association with resistance against oomycetes., Plant Physiol. 2004 Feb;134(2):858-70. Epub 2004 Feb 5. (Pubmed: 14764907)
Hugot K, Riviere MP, Moreilhon C, Dayem MA, Cozzitorto J, Arbiol G, Barbry P, Weiss C, Galiana E

Besides the systemic acquired resistance (SAR) induced in response to microbial stimulation, host plants may also acquire resistance to pathogens in response to endogenous stimuli associated with their own development. In tobacco (Nicotiana tabacum), the vegetative-to-flowering transition comes along with a susceptibility-to-resistance transition to the causal agent of black shank disease, the oomycete Phytophthora parasitica. This resistance affects infection effectiveness and hyphal expansion and is associated with extracellular accumulation of a cytotoxic activity that provokes in vitro cell death of P. parasitica zoospores. As a strategy to determine the extracellular events important for restriction of pathogen growth, we screened the tobacco genome for genes encoding secreted or membrane-bound proteins expressed in leaves of flowering plants. Using a signal sequence trap approach in yeast (Saccharomyces cerevisiae), 298 clones were selected that appear to encode for apoplastic, cell wall, or membrane-bound proteins involved in stress response, in plant defense, or in cell wall modifications. Microarray and northern-blot analyses revealed that, at late developmental stages, leaves were characterized by the coordinate up-regulation of genes involved in SAR and in peroxidative cross-linking of structural proteins to cell wall. This suggests the potential involvement of these genes in extracellular events that govern the expression of developmental resistance. The analysis of the influence of salicylic acid on mRNA accumulation also indicates a more complex network for regulation of gene expression at a later stage of tobacco development than during SAR. Further characterization of these genes will permit the formulation of hypotheses to explain resistance and to establish the connection with development.


13. Early gene expression in wounded human keratinocytes revealed by DNA microarray analysis., Comp Funct Genomics. 2003;4(1):47-55. (Pubmed: 18629100)
Dayem MA, Moreilhon C, Turchi L, Magnone V, Christen R, Ponzio G, Barbry P

WOUND HEALING INVOLVES SEVERAL STEPS: spreading of the cells, migration and proliferation. We have profiled gene expression during the early events of wound healing in normal human keratinocytes with a home-made DNA microarray containing about 1000 relevant human probes. An original wounding machine was used, that allows the wounding of up to 40% of the surface of a confluent monolayer of cultured cells grown on a Petri dish (compared with 5% with a classical 'scratch' method). The two aims of the present study were: (a) to validate a limited number of genes by comparing the expression levels obtained with this technique with those found in the literature; (b) to combine the use of the wounding machine with DNA microarray analysis for large-scale detection of the molecular events triggered during the early stages of the wound-healing process. The time-courses of RNA expression observed at 0.5, 1.5, 3, 6 and 15 h after wounding for genes such as c-Fos, c-Jun, Egr1, the plasminogen activator PLAU (uPA) and the signal transducer and transcription activator STAT3, were consistent with previously published data. This suggests that our methodologies are able to perform quantitative measurement of gene expression. Transcripts encoding two zinc finger proteins, ZFP36 and ZNF161, and the tumour necrosis factor alpha-induced protein TNFAIP3, were also overexpressed after wounding. The role of the p38 mitogen-activated protein kinase (p38MAPK) in wound healing was shown after the inhibition of p38 by SB203580, but our results also suggest the existence of surrogate activating pathways.