Plateforme de génomique, IPMC UMR7275
660 Route des Lucioles, SOPHIA ANTIPOLIS, 06560 VALBONNE
tél: 04-93-95-77-77, fax: 04-93-95-77-08

Expertise

La plateforme de génomique fonctionnelle de Nice Sophia Antipolis existe depuis 1999. Initialement orientée vers la conception, la fabrication et l'analyse de puces à ADN, elle a contribué à ouvrir cette nouvelle technologie à une large communauté, mettant à cette occasion en place un système d'information performant (Mediante), capable de gérer de grandes masses de données, et fonctionnant en production depuis plus de 10 ans.

Tout en fournissant encore aujourd'hui un service d'analyse de puces à ADN s'appuyant sur la technologie développée par Agilent, son activité s'est principalement réorientée vers des services de séquencage à haut-débit (Illumina NextSeq500), offrant dans ce contexte de nombreux types d'analyses des acides nucléiques, et une capacité pour analyser de grandes collections d'échantillons, y compris au niveau de la cellule unique. L'activité de routine concerne des applications comme le RNA-seq, le smallRNA-seq, le CHiP-seq, le CLIP-seq, le reséquencage, mais des projets spécifiques peuvent aussi etre mis en place dans des domaines moins standards, comme le séquencage de novo de génomes, ou certains protocoles particuliers : riboSeq, capSeq,... La plateforme se compose de 4 ingénieurs wet lab et de 4 bio-informaticiens.

Equipements

  1. Pré-séquencage : Nanodrop, Bioanalyzer, Qubit, CovarisS2, Ion Chef, NeoPrep, Blue pippin
  2. Analyse Single Cell : 10x Genomics Chromium, Fluidigm C1, Fluidigm Biomark
  3. Séquencage : NextSeq500 Illumina, MinION et PromethION Oxford Nanopore Technology, Chromium 10X Genomics
  4. Puces à ADN : High-Resolution Microarray Scanner Agilent, Station Affymetrix


Les résultats sont stockés automatiquement sur le portail d'informations de la plateforme Mediante. Cela concerne notamment les fichiers .BAM d'alignement, les fichiers .BW de couverture et l'ensemble des fichiers de l'analyse secondaire et des analyses statistiques conduites en partenariat avec le collaborateur. Sur demande l'ensemble des données brutes sont également mises à disposition et une aide est fournit pour la soumission des données vers la base de données publiques GEO (Gene Expression Omnibus).

Related publications



90 publications found

1. COVID-19 patients age, comorbidity profiles and clinical presentation related to the SARS-CoV-2 UK-variant spread in the Southeast of France, Sci Rep. 2021 Sep 16;11(1):18456.doi: 10.1038/s41598-021-95067-7 (Pubmed: 34531412)
Courjon J, Contenti J, Demonchy E, Levraut J, Barbry P, Rios G, Dellamonica J, Chirio D, Bonnefoy C, Giordanengo V, Carles M

The variant 20I/501Y.V1, associated to a higher risk of transmissibility, emerged in Nice city (Southeast of France, French Riviera) during January 2021. The pandemic has resumed late December 2020 in this area. A high incidence rate together with a fast turn-over of the main circulating variants, provided us the opportunity to analyze modifications in clinical profile and outcome traits. We performed an observational study in the University hospital of Nice from December 2020 to February 2021. We analyzed data of sequencing of SARS-CoV-2 from the sewage collector and PCR screening from all positive samples at the hospital. Then, we described the characteristics of all COVID-19 patients admitted in the emergency department (ED) (n = 1247) and those hospitalized in the infectious diseases ward or ICU (n = 232). The UK-variant was absent in this area in December, then increasingly spread in January representing 59% of the PCR screening performed mid-February. The rate of patients over 65 years admitted to the ED decreased from 63 to 50% (p = 0.001). The mean age of hospitalized patients in the infectious diseases ward decreased from 70.7 to 59.2 (p < 0.001) while the proportion of patients without comorbidity increased from 16 to 42% (p = 0.007). Spread of the UK-variant in the Southeast of France affects younger and healthier patients.


2. Monitoring SARS-CoV-2 variants alterations in Nice neighborhoods by wastewater nanopore sequencing., Lancet Reg Health Eur. 2021 Aug 17:100202. doi: 10.1016/j.lanepe.2021.100202 (Pubmed: 34423327)
Rios G, Lacoux C, Leclercq V, Diamant A, Lebrigand K, Lazuka A, Soyeux E, Lacroix S, Fassy J, Couesnon A, Thiery R, Mari B, Pradier C, Waldmann R, Barbry P

Background: Wastewater surveillance was proposed as an epidemiological tool to define the prevalence and evolution of the SARS-CoV-2 epidemics. However, most implemented SARS-CoV-2 wastewater surveillance projects were based on qPCR measurement of virus titers and did not address the mutational spectrum of SARS-CoV-2 circulating in the population. Methods: We have implemented a nanopore RNA sequencing monitoring system in the city of Nice (France, 550,000 inhabitants). Between October 2020 and March 2021, we monthly analyzed the SARS-CoV-2 variants in 113 wastewater samples collected in the main wastewater treatment plant and 20 neighborhoods. Findings: We initially detected the lineages predominant in Europe at the end of 2020 (B.1.160, B.1.177, B.1.367, B.1.474, and B.1.221). In January, a localized emergence of a variant (Spike:A522S) of the B.1.1.7 lineage occurred in one neighborhood. It rapidly spread and became dominant all over the city. Other variants of concern (B.1.351, P.1) were also detected in some neighborhoods, but at low frequency. Comparison with individual clinical samples collected during the same week showed that wastewater sequencing correctly identified the same lineages as those found in COVID-19 patients. Interpretation: Wastewater sequencing allowed to document the diversity of SARS-CoV-2 sequences within the different neighborhoods of the city of Nice. Our results illustrate how sequencing of sewage samples can be used to track pathogen sequence diversity in the current pandemics and in future infectious disease outbreaks.


3. The FibromiR miR-214-3p Is Upregulated in Duchenne Muscular Dystrophy and Promotes Differentiation of Human Fibro-Adipogenic Muscle Progenitors. , Cells. 2021 Jul 20;10(7):1832. doi: 10.3390/cells10071832 (Pubmed: 34360002)
Arrighi N, Moratal C, Savary G, Fassy J, Nottet N, Pons N, Clément N, Fellah S, Larrue R, Magnone V, Lebrigand K, Pottier N, Dechesne C, Vassaux G, Dani C, Peraldi P, Mari B

Fibrosis is a deleterious invasion of tissues associated with many pathological conditions, such as Duchenne muscular dystrophy (DMD) for which no cure is at present available for its prevention or its treatment. Fibro-adipogenic progenitors (FAPs) are resident cells in the human skeletal muscle and can differentiate into myofibroblasts, which represent the key cell population responsible for fibrosis. In this study, we delineated the pool of microRNAs (miRNAs) that are specifically modulated by TGFβ1 in FAPs versus myogenic progenitors (MPs) by a global miRNome analysis. A subset of candidates, including several "FibromiRs", was found differentially expressed between FAPs and MPs and was also deregulated in DMD versus healthy biopsies. Among them, the expression of the TGFβ1-induced miR-199a~214 cluster was strongly correlated with the fibrotic score in DMD biopsies. Loss-of-function experiments in FAPs indicated that a miR-214-3p inhibitor efficiently blocked expression of fibrogenic markers in both basal conditions and following TGFβ1 stimulation. We found that FGFR1 is a functional target of miR-214-3p, preventing the signaling of the anti-fibrotic FGF2 pathway during FAP fibrogenesis. Overall, our work demonstrates that the « FibromiR » miR-214-3p is a key activator of FAP fibrogenesis by modulating the FGF2/FGFR1/TGFβ axis, opening new avenues for the treatment of DMD.


4. Identification of a Repair-Supportive Mesenchymal Cell Population during Airway Epithelial Regeneration, Cell Rep. 2020 Dec 22;33(12):108549. doi: 10.1016/j.celrep.2020.108549. (Pubmed: 33357434)
Moiseenko A, Vazquez-Armendariz AI, Kheirollahi V, Chu X, Tata A, Rivetti S, Günther S, Lebrigand K, Herold S, Braun T, Mari B, De Langhe S, Kwapiszewska G, Günther A, Chen C, Seeger W, Tata PR, Zhang JS, Bellusci S, El Agha E

Tissue regeneration requires coordinated and dynamic remodeling of stem and progenitor cells and the surrounding niche. Although the plasticity of epithelial cells has been well explored in many tissues, the dynamic changes occurring in niche cells remain elusive. Here, we show that, during lung repair after naphthalene injury, a population of PDGFRα+ cells emerges in the non-cartilaginous conducting airway niche, which is normally populated by airway smooth muscle cells (ASMCs). This cell population, which we term "repair-supportive mesenchymal cells" (RSMCs), is distinct from conventional ASMCs, which have previously been shown to contribute to epithelial repair. Gene expression analysis on sorted lineage-labeled cells shows that RSMCs express low levels of ASMC markers, but high levels of the pro-regenerative marker Fgf10. Organoid co-cultures demonstrate an enhanced ability for RSMCs in supporting club-cell growth. Our study highlights the dynamics of mesenchymal cells in the airway niche and has implications for chronic airway-injury-associated diseases.


5. Longevity strategies in response to light in the reef coral Stylophora pistillata, Sci Rep. 2020 Nov 17;10(1):19937. doi: 10.1038/s41598-020-76925-2 (Pubmed: 33203910)
Ottaviani A, Eid R, Zoccola D, Pousse M, Dubal JM, Barajas E, Jamet K, Lebrigand K, Lapébie P, Baudoin C, Giraud-Panis MJ, Rouan A, Beauchef G, Guéré C, Vié K, Barbry P, Tambutté S, Gilson E, Allemand D

Aging is a multifactorial process that results in progressive loss of regenerative capacity and tissue function while simultaneously favoring the development of a large array of age-related diseases. Evidence suggests that the accumulation of senescent cells in tissue promotes both normal and pathological aging. Oxic stress is a key driver of cellular senescence. Because symbiotic long-lived reef corals experience daily hyperoxic and hypoxic transitions, we hypothesized that these long-lived animals have developed specific longevity strategies in response to light. We analyzed transcriptome variation in the reef coral Stylophora pistillata during the day-night cycle and revealed a signature of the FoxO longevity pathway. We confirmed this pathway by immunofluorescence using antibodies against coral FoxO to demonstrate its nuclear translocation. Through qPCR analysis of nycthemeral variations of candidate genes under different light regimens, we found that, among genes that were specifically up- or downregulated upon exposure to light, human orthologs of two "light-up" genes (HEY1 and LONF3) exhibited anti-senescence properties in primary human fibroblasts. Therefore, these genes are interesting candidates for counteracting skin aging. We propose a large screen for other light-up genes and an investigation of the biological response of reef corals to light (e.g., metabolic switching) to elucidate these processes and identify effective interventions for promoting healthy aging in humans.


6. Immunoglobulin light-chain toxicity in a mouse model of monoclonal immunoglobulin light-chain deposition disease, Blood. 2020 Oct 1;136(14):1645-1656.doi: 10.1182/blood.2020005980. (Pubmed: 32559766)
Bender S, Ayala MV, Bonaud A, Javaugue V, Carrion C, Oblet C, Rinsant A, Kaaki S, Oruc Z, Boyer F, Paquet A, Pons N, Hervé B, Ashi MO, Jaccard A, Delpy L, Touchard G, Cogné M, Bridoux F, Sirac C

Light chain (LC) deposition disease (LCDD) is a rare disorder characterized by glomerular and peritubular amorphous deposits of a monoclonal immunoglobulin LC, leading to nodular glomerulosclerosis and nephrotic syndrome. We developed a transgenic model using site-directed insertion of the variable domain of a pathogenic human LC gene into the mouse immunoglobulin κ locus, ensuring its production by all plasma cells (PCs). High free LC levels were achieved after backcrossing with mice presenting increased PC differentiation and no immunoglobulin heavy chain production. Our mouse model recapitulates the characteristic features of LCDD, including progressive glomerulosclerosis, nephrotic-range proteinuria, and finally kidney failure. The variable domain of the LC bears alone the structural properties involved in its pathogenicity. RNA sequencing conducted on PCs demonstrated that LCDD LC induces endoplasmic reticulum stress, likely accounting for the high efficiency of proteasome inhibitor-based therapy. Accordingly, reduction of circulating pathogenic LC was efficiently achieved and not only preserved renal function but also partially reversed kidney lesions. Finally, transcriptome analysis of presclerotic glomeruli revealed that proliferation and extracellular matrix remodeling represented the first steps of glomerulosclerosis, paving the way for future therapeutic strategies in LCDD and other kidney diseases featuring diffuse glomerulosclerosis, particularly diabetic nephropathy.


7. Evidence of early increased sialylation of airway mucins and defective mucociliary clearance in CFTR-deficient piglets, J Cyst Fibros. 2020 Sep 23:S1569-1993(20)30868-7. doi:10.1016/j.jcf.2020.09.009. (Pubmed: 32978064)
Caballero I, Ringot-Destrez B, Si-Tahar M, Barbry P, Guillon A, Lantier I, Berri M, Chevaleyre C, Fleurot I, Barc C, Ramphal R, Pons N, Paquet A, Lebrigand K, Baron C, Bähr A, Klymiuk N, Léonard R, Robbe-Masselot C

Background: Bacterial colonization in cystic fibrosis (CF) lungs has been directly associated to the loss of CFTR function, and/or secondarily linked to repetitive cycles of chronic inflammation/infection. We hypothesized that altered molecular properties of mucins could contribute to this process. Methods: Newborn CFTR+/+ and CFTR-/- were sacrificed before and 6 h after inoculation with luminescent Pseudomonas aeruginosa into the tracheal carina. Tracheal mucosa and the bronchoalveolar lavage (BAL) fluid were collected to determine the level of mucin O-glycosylation, bacteria binding to mucins and the airways transcriptome. Disturbances in mucociliary transport were determined by ex-vivo imaging of luminescent Pseudomonas aeruginosa. Results: We provide evidence of an increased sialylation of CF airway mucins and impaired mucociliary transport that occur before the onset of inflammation. Hypersialylation of mucins was reproduced on tracheal explants from non CF animals treated with GlyH101, an inhibitor of CFTR channel activity, indicating a causal relationship between the absence of CFTR expression and the sialylation of mucins. This increased sialylation was correlated to an increased adherence of P. aeruginosa to mucins. In vivo infection of newborn CF piglets by live luminescent P. aeruginosa demonstrated an impairment of mucociliary transport of this bacterium, with no evidence of pre-existing inflammation. Conclusions: Our results document for the first time in a well-defined CF animal model modifications that affect the O-glycan chains of mucins. These alterations precede infection and inflammation of airway tissues, and provide a favorable context for microbial development in CF lung that hallmarks this disease.


8. Transcriptomic and Ultrastructural Signatures of K +-Induced Aggregation in Phytophthora parasitica Zoospores, Microorganisms. 2020 Jul 7;8(7):1012. doi: 10.3390/microorganisms8071012. (Pubmed: 32645882)
Bassani I, Rancurel C, Pagnotta S, Orange F, Pons N, Lebrigand K, Panabières F, Counillon L, Noblin X, Galiana E

Most pathogenic oomycetes of the genus Phytophthora spread in water films as flagellated zoospores. Zoospores perceive and produce signals attracting other zoospores, resulting in autoaggregation in vitro or biofilm formation on plant surface. The mechanisms underlying intercellular communication and consequent attraction, adhesion and aggregation are largely unknown. In Phytophthora parasitica, the perception of a K+ gradient induces coordinated motion and aggregation. To define cellular and molecular events associated with oomycete aggregation, we combined transcriptomic and ultrastructural analyses. Results indicate involvement of electroception in K+ sensing. They establish that the transcriptome repertoire required for swimming and aggregation is already fully functional at zoospore release. At the time points analyzed, aggregates are mainly constituted of zoospores. They produce vesicular and fibrillary material discharged at cell-to-cell contacts. Consistently, the signature of transcriptome dynamics during transition to aggregates is an upregulation of genes potentially related to vesicular trafficking. Moreover, transcriptomic and functional analyses show a strong enhancement of carbonic anhydrase activity, indicating that pH homeostasis may contribute to aggregation by acting on both zoospore movement and adhesion. This study poses the molecular and cellular bases of aggregative behavior within oomycetes and expands the current knowledge of ion perception-mediated dissemination of propagules in the rhizosphere.


9. Inhibition of Patched Drug Efflux Increases Vemurafenib Effectiveness against Resistant Braf V600E Melanoma, Cancers (Basel). 2020 Jun 9;12(6):1500.doi: 10.3390/cancers12061500. (Pubmed: 32526884)
Signetti L, Elizarov N, Simsir M, Paquet A, Douguet D, Labbal F, Debayle D, Di Giorgio A, Biou V, Girard C, Duca M, Bretillon L, Bertolotto C, Verrier B, Azoulay S, Mus-Veteau I

Melanoma patients harboring the BRAFV600E mutation are treated with vemurafenib. Almost all of them ultimately acquire resistance, leading to disease progression. Here, we find that a small molecule from a marine sponge, panicein A hydroquinone (PAH), overcomes resistance of BRAFV600E melanoma cells to vemurafenib, leading to tumor elimination in corresponding human xenograft models in mice. We report the synthesis of PAH and demonstrate that this compound inhibits the drug efflux activity of the Hedgehog receptor, Patched. Our SAR study allowed identifying a key pharmacophore responsible for this activity. We showed that Patched is strongly expressed in metastatic samples from a cohort of melanoma patients and is correlated with decreased overall survival. Patched is a multidrug transporter that uses the proton motive force to efflux drugs. This makes its function specific to cancer cells, thereby avoiding toxicity issues that are commonly observed with inhibitors of ABC multidrug transporters. Our data provide strong evidence that PAH is a highly promising lead for the treatment of vemurafenib resistant BRAFV600E melanoma.


10. The nuclear hypoxia-regulated NLUCAT1 long non-coding RNA contributes to an aggressive phenotype in lung adenocarcinoma through regulation of oxidative stress., Oncogene. 2019 Aug 15. doi: 10.1038/s41388-019-0935-y (Pubmed: 31417181)
Moreno Leon L, Gautier M, Allan R, Ilié M, Nottet N, Pons N, Paquet A, Lebrigand K, Truchi M, Fassy J, Magnone V, Kinnebrew G, Radovich M, Cheok MH, Barbry P, Vassaux G, Marquette CH, Ponzio G, Ivan M, Pottier N, Hofman P, Mari B, Rezzonico R

Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, NLUCAT1, which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.


11. GAPDH Expression Predicts the Response to R-CHOP, the Tumor Metabolic Status, and the Response of DLBCL Patients to Metabolic Inhibitors., Cell Metab. (Pubmed: 30827861)
Chiche J, Reverso-Meinietti J, Mouchotte A, Rubio-Patiño C, Mhaidly R, Villa E, Bossowski JP, Proics E, Grima-Reyes M, Paquet A, Fragaki K, Marchetti S, Briere J, Ambrosetti D, Michiels JF, Molina TJ, Copie-Bergman C, Lehmann-Che J, Peyrottes I, Peyrade F, de Kerviler E, Taillan B, Garnier G, Verhoeyen E, Paquis-Flucklinger V, Shintu L, Delwail V, Delpech-Debiais C, Delarue R, Bosly A, Petrella T, Brisou G, Nadel B, Barbry P, Mounier N, Thieblemont C, Ricci JE

Diffuse large B cell lymphoma (DLBCL) is a heterogeneous disease treated with anti-CD20-based immuno-chemotherapy (R-CHOP). We identified that low levels of GAPDH predict a poor response to R-CHOP treatment. Importantly, we demonstrated that GAPDHlow lymphomas use OxPhos metabolism and rely on mTORC1 signaling and glutaminolysis. Consistently, disruptors of OxPhos metabolism (phenformin) or glutaminolysis (L-asparaginase) induce cytotoxic responses in GAPDHlow B cells and improve GAPDHlow B cell-lymphoma-bearing mice survival, while they are low or not efficient on GAPDHhigh B cell lymphomas. Ultimately, we selected four GAPDHlow DLBCL patients, who were refractory to all anti-CD20-based therapies, and targeted DLBCL metabolism using L-asparaginase (K), mTOR inhibitor (T), and metformin (M) (called KTM therapy). Three out of the four patients presented a complete response upon one cycle of KTM. These findings establish that the GAPDH expression level predicts DLBCL patients' response to R-CHOP treatment and their sensitivity to specific metabolic inhibitors.


12. The Long Non-Coding RNA DNM3OS is a Reservoir of FibromiRs with Major Functions in Lung Fibroblast Response to TGF-β and Pulmonary Fibrosis, Am J Respir Crit Care Med. 2019 Apr 9. (Pubmed: 30964696)
Savary G, Dewaeles E, Diazzi S, Buscot M, Nottet N, Fassy J, Courcot E, Henaoui IS, Lemaire J, Martis N, Van der Hauwaert C, Pons N, Magnone V, Leroy S, Hofman V, Plantier L, Lebrigand K, Paquet A, Lino Cardenas CL, Vassaux G, Hofman P, Günther A, Crestani B, Wallaert B, Rezzonico R, Brousseau T, Glowacki F, Bellusci S, Perrais M, Broly F, Barbry P, Marquette CH, Cauffiez C, Mari B, Pottier N

RATIONALE: Given the paucity of effective treatments for Idiopathic Pulmonary Fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. Transforming growth factor β (TGF-β) is the main pro-fibrotic factor, but its inhibition is associated with severe side effects due to its pleiotropic role. OBJECTIVES: We hypothesized that downstream non-coding effectors of TGF-β in fibroblasts may represent new effective therapeutic targets whose modulation may be well-tolerated. METHODS: We investigated the whole non-coding fraction of TGF-β-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblast. Differential expression of the long non-coding RNA DNM3OS and its associated miRNAs was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis. MEASUREMENTS AND MAIN RESULTS: We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-β-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e. miR-199a-5p/3p and miR-214-3p), which influence both SMAD and non-SMAD components of TGF-β signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis. CONCLUSION: Pharmacological approaches aiming at interfering with DNM3OS may represent new effective therapeutic strategies in IPF.


13. CD4+ T Cells Affect the Thyroid Hormone Transport at the Choroid Plexus in Mice Raised in Enriched Environment, Neuroimmunomodulation. 2019 Jan 31:1-8. doi: 10.1159/000495987 (Pubmed: 30703773)
Zarif H, Paquet A, Lebrigand K, Arguel MJ, Heurteaux C, Glaichenhaus N, Chabry J, Guyon A, Petit-Paitel A

Others and we have shown that T cells have an important role in hippocampal synaptic plasticity, including neurogenesis in the dentate gyrus, spinogenesis, and glutamatergic synaptic function in the CA of the hippocampus. Hippocampus plasticity is particularly involved in the brain effects of the enriched environment (EE), and interestingly CD4+ and CD8+ T cells play essential and differential roles in these effects. However, the precise mechanisms by which they act on the brain remain elusive. OBJECTIVES: We searched for a putative mechanism of action by which CD4+ T cells could influence brain plasticity and hypothesized that they could regulate protein transport at the level of the blood-CSF barrier in the choroid plexus. METHOD: We compared mice housed in EE and deprived of CD4+ T cells using a depleting antibody with a control group injected with the control isotype. We analyzed in the hippocampus the gene expression profiles using the Agilent system, and the expression of target proteins in plasma, CSF, and the choroid plexus using ELISA. RESULTS: We show that CD4+ T cells may influence EE-induced hippocampus plasticity via thyroid hormone signaling by regulating in the choroid plexus the expression of transthyretin, the major transporter of thyroxine (T4) to the brain parenchyma. CONCLUSIONS: Our study highlights the contribution of close interactions between the immune and neuroendocrine systems in brain plasticity and function.


14. Characterization of siRNAs clusters in Arabidopsis thaliana galls induced by the root-knot nematode Meloidogyne incognita, BMC Genomics. 2018 Dec 18;19 (Pubmed: 30563458)
Medina C, da Rocha M, Magliano M, Raptopoulo A, Marteu N, Lebrigand K, Abad P, Favery B, Jaubert-Possamai S

Root-knot nematodes (RKN), genus Meloidogyne, are plant parasitic worms that have the ability to transform root vascular cylinder cells into hypertrophied, multinucleate and metabolically over-active feeding cells. Redifferentiation into feeding cells is the result of a massive transcriptional reprogramming of root cells targeted by RKN. Since RKN are able to induce similar feeding cells in roots of thousands of plant species, these worms are thought to manipulate essential and conserved plant molecular pathways. Small non-coding RNAs of uninfected roots and infected root galls induced by M. incognita from Arabidopsis thaliana were sequenced by high throughput sequencing. SiRNA populations were analysed by using the Shortstack algorithm. We identified siRNA clusters that are differentially expressed in infected roots and evidenced an over-representation of the 23-24 nt siRNAs in infected tissue. This size corresponds to heterochromatic siRNAs (hc-siRNAs) which are known to regulate expression of transposons and genes at the transcriptional level, mainly by inducing DNA methylation. Correlation of siRNA clusters expression profile with transcriptomic data identified several protein coding genes that are candidates to be regulated by siRNAs at the transcriptional level by RNA directed DNA methylation (RdDM) pathway either directly or indirectly via silencing of neighbouring transposable elements.


15. CDC20B is required for deuterosome-mediated centriole production in multiciliated cells, Nat Commun. 2018 Nov 7;9(1):4668. doi: 10.1038/s41467-018-06768-z. (Pubmed: 30405130)
Revinski DR, Zaragosi LE, Boutin C, Ruiz-Garcia S, Deprez M, Thomé V, Rosnet O, Gay AS, Mercey O, Paquet A, Pons N, Ponzio G, Marcet B, Kodjabachian L, Barbry P

Multiciliated cells (MCCs) harbor dozens to hundreds of motile cilia, which generate hydrodynamic forces important in animal physiology. In vertebrates, MCC differentiation involves massive centriole production by poorly characterized structures called deuterosomes. Here, single-cell RNA sequencing reveals that human deuterosome stage MCCs are characterized by the expression of many cell cycle-related genes. We further investigated the uncharacterized vertebrate-specific cell division cycle 20B (CDC20B) gene, which hosts microRNA-449abc. We show that CDC20B protein associates to deuterosomes and is required for centriole release and subsequent cilia production in mouse and Xenopus MCCs. CDC20B interacts with PLK1, a kinase known to coordinate centriole disengagement with the protease Separase in mitotic cells. Strikingly, over-expression of Separase rescues centriole disengagement and cilia production in CDC20B-deficient MCCs. This work reveals the shaping of deuterosome-mediated centriole production in vertebrate MCCs, by adaptation of canonical and recently evolved cell cycle-related molecules.


16. New Insights Into the Role of Cav2 Protein Family in Calcium Flux Deregulation in Fmr1-KO Neurons., Front Mol Neurosci. 2018 Sep 27;11:342 (Pubmed: 30319351)
Castagnola S, Delhaye S, Folci A, Paquet A, Brau F, Duprat F, Jarjat M, Grossi M, Béal M, Martin S, Mantegazza M, Bardoni B, Maurin T

Fragile X syndrome (FXS), the most common form of inherited intellectual disability (ID) and a leading cause of autism, results from the loss of expression of the Fmr1 gene which encodes the RNA-binding protein Fragile X Mental Retardation Protein (FMRP). Among the thousands mRNA targets of FMRP, numerous encode regulators of ion homeostasis. It has also been described that FMRP directly interacts with Ca2+ channels modulating their activity. Collectively these findings suggest that FMRP plays critical roles in Ca2+ homeostasis during nervous system development. We carried out a functional analysis of Ca2+ regulation using a calcium imaging approach in Fmr1-KO cultured neurons and we show that these cells display impaired steady state Ca2+ concentration and an altered entry of Ca2+ after KCl-triggered depolarization. Consistent with these data, we show that the protein product of the Cacna1a gene, the pore-forming subunit of the Cav2.1 channel, is less expressed at the plasma membrane of Fmr1-KO neurons compared to wild-type (WT). Thus, our findings point out the critical role that Cav2.1 plays in the altered Ca2+ flux in Fmr1-KO neurons, impacting Ca2+ homeostasis of these cells. Remarkably, we highlight a new phenotype of cultured Fmr1-KO neurons that can be considered a novel cellular biomarker and is amenable to small molecule screening and identification of new drugs to treat FXS.


17. The "one airway, one disease" concept in light of Th2 inflammation., Eur Respir J. 2018 Sep 6. pii: 1800437. doi: 10.1183/13993003.00437-2018. (Pubmed: 30190271)
Giovannini-Chami L, Paquet A, Sanfiorenzo C, Pons N, Cazareth J, Magnone V, Lebrigand K, Chevalier B, Vallauri A, Julia V, Marquette CH, Marcet B, Leroy S, Barbry P

In line with the pathophysiological continuum described between nose and bronchus in allergic respiratory diseases, we assessed whether nasal epithelium could mirror the Th2 status of bronchial epithelium.Nasal and bronchial cells were collected by brushings from patients with allergic rhinitis and asthma (AR, n=12), isolated allergic rhinitis (R, n=14) and healthy controls (C, n=13). Cellular composition was assessed by flow cytometry. Gene expression was analysed by RNA sequencing. Th2, Th17 and interferon signatures were derived from the literature.Infiltration by polymorphonuclear neutrophils in nose excluded 30% of the initial cohort. All bronchial samples from AR group were Th2-high. Nasal samples gene expression profile from the AR group correctly predicted the paired bronchial sample Th2 status in 71% of cases. Nevertheless, nasal cells did not appear as a reliable surrogate of the Th2 response, in particular due to a more robust influence of the interferon response in 14/26 nasal samples. Th2 scores correlated with mast cells counts (p<0.001) and numbers of sensitizations (p=0.006 and 0.002), while Th17 scores correlated with PMN counts (p<0.014).The large variability in nasal cell composition and type of inflammation restricts its use as a surrogate for assessing bronchial Th2 inflammation in AR patients.


18. The stem cell-associated gene expression signature allows risk stratification in pediatric acute myeloid leukemia., Leukemia. 2018 Aug 8. doi: 10.1038/s41375-018-0227-5. (Pubmed: 30089916)
Duployez N, Marceau-Renaut A, Villenet C, Petit A, Rousseau A, Ng SWK, Paquet A, Gonzales F, Barthélémy A, Leprêtre F, Pottier N, Nelken B, Michel G, Baruchel A, Bertrand Y, Leverger G, Lapillonne H, Figeac M, Dick JE, Wang JCY, Preudhomme C, Cheok M

Despite constant progress in prognostic risk stratification, children with acute myeloid leukemia (AML) still relapse. Treatment failure and subsequent relapse have been attributed to acute myeloid leukemia-initiating cells (LSC), which harbor stem cell properties and are inherently chemoresistant. Although pediatric and adult AML represent two genetically very distinct diseases, we reasoned that common LSC gene expression programs are shared and consequently, the highly prognostic LSC17 signature score recently developed in adults may also be of clinical interest in childhood AML. Here, we demonstrated prognostic relevance of the LSC17 score in pediatric non-core-binding factor AML using Nanostring technology (ELAM02) and RNA-seq data from the NCI (TARGET-AML). AML were stratified by LSC17 quartile groups (lowest 25%, intermediate 50% and highest 25%) and children with low LSC17 score had significantly better event-free survival (EFS: HR = 3.35 (95%CI = 1.64-6.82), P < 0.001) and overall survival (OS: HR = 3.51 (95%CI = 1.38-8.92), P = 0.008) compared with patients with high LSC17 scores. More importantly, the high LSC17 score was an independent negative EFS and OS prognosticator determined by multivariate Cox model analysis (EFS: HR = 3.42 (95% CI = 1.63-7.16), P = 0.001; OS HR = 3.02 (95%CI = 1.16-7.85), P = 0.026). In conclusion, we have demonstrated the broad applicability of the LSC17 score in the clinical management of AML by extending its prognostic relevance to pediatric AML.


19. Effect of mutant variants of the KRAS gene on PD-L1 expression and on the immune microenvironment and association with clinical outcome in lung adenocarcinoma patients, Lung Cancer. 2018 Jul;121:70-75. (Pubmed: 29858030)
Falk AT, Yazbeck N, Guibert N, Chamorey E, Paquet A, Ribeyre L, Bence C, Zahaf K, Leroy S, Marquette CH, Cohen C, Mograbi B, Mazières J, Hofman V, Brest P, Hofman P, Ilié M

OBJECTIVES: The effect of anti-PD-1/PD-L1 inhibitors on lung adenocarcinomas (LADCs) with KRAS mutations is debatable. We examined the association between specific mutant KRAS proteins and the immune infiltrates with the outcome of patients with LADCs. PATIENTS AND METHODS: In 219 LADCs harboring either wild-type (WT) or mutated KRAS gene, we quantified the density of several immune markers by immunohistochemistry followed by automated digital image analysis. Data were correlated to clinicopathological parameters and outcome of patients. RESULTS: Tumors harboring mutant KRAS-G12 V had a significantly higher PD-L1 expression compared to other tumors (p = 0.044), while mutant KRAS-G12D tumors showed an increase in the density of CD66b+ cells (p = 0.001). High PD-L1 expression in tumor cells was associated to improved overall survival (OS) in KRAS mutant patients (p = 0.012), but not in the WT population (p = 0.385), whereas increased PD-L1 expression in immune cells correlated to poor OS of KRAS-WT patients (p = 0.025), with no difference in patients with KRAS mutations. CONCLUSIONS: KRAS mutational status can affect the immune microenvironment and survival of LADC patients in a heterogeneous way, implying that specific mutant KRAS variants expressed by the tumor should be considered when stratifying patients for immunotherapy.


20. CD4+ T Cells Have a Permissive Effect on Enriched Environment-Induced Hippocampus Synaptic Plasticity., Front Synaptic Neurosci. 2018 Jun 13;10:14. doi: 10.3389/fnsyn.2018.00014. eCollection 2018. (Pubmed: 29950983)
Zarif H, Hosseiny S, Paquet A, Lebrigand K, Arguel MJ, Cazareth J, Lazzari A, Heurteaux C, Glaichenhaus N, Chabry J, Guyon A, Petit-Paitel A

Living in an enriched environment (EE) benefits health by acting synergistically on various biological systems including the immune and the central nervous systems. The dialog between the brain and the immune cells has recently gained interest and is thought to play a pivotal role in beneficial effects of EE. Recent studies show that T lymphocytes have an important role in hippocampal plasticity, learning, and memory, although the precise mechanisms by which they act on the brain remain elusive. Using a mouse model of EE, we show here that CD4+ T cells are essential for spinogenesis and glutamatergic synaptic function in the CA of the hippocampus. However, CD4+ lymphocytes do not influence EE-induced neurogenesis in the DG of the hippocampus, by contrast to what we previously demonstrated for CD8+ T cells. Importantly, CD4+ T cells located in the choroid plexus have a specific transcriptomic signature as a function of the living environment. Our study highlights the contribution of CD4+ T cells in the brain plasticity and function.


21. Comparative Transcriptome Profiling of Virulent and Attenuated Ehrlichia ruminantium Strains Highlighted Strong Regulation of map1- and Metabolism Related Genes., Front Cell Infect Microbiol. 2018 May 15;8:153. doi: 10.3389/fcimb.2018.00153. eCollection 2018. (Pubmed: 29868509)
Pruneau L, Lebrigand K, Mari B, Lefrançois T, Meyer DF, Vachiery N

The obligate intracellular pathogenic bacterium, Ehrlichia ruminantium, is the causal agent of heartwater, a fatal disease in ruminants transmitted by Amblyomma ticks. So far, three strains have been attenuated by successive passages in mammalian cells. The attenuated strains have improved capacity for growth in vitro, whereas they induced limited clinical signs in vivo and conferred strong protection against homologous challenge. However, the mechanisms of pathogenesis and attenuation remain unknown. In order to improve knowledge of E. ruminantium pathogenesis, we performed a comparative transcriptomic analysis of two distant strains of E. ruminantium, Gardel and Senegal, and their corresponding attenuated strains. Overall, our results showed an upregulation of gene expression encoding for the metabolism pathway in the attenuated strains compared to the virulent strains, which can probably be associated with higher in vitro replicative activity and a better fitness to the host cells. We also observed a significant differential expression of membrane protein-encoding genes between the virulent and attenuated strains. A major downregulation of map1-related genes was observed for the two attenuated strains, whereas upregulation of genes encoding for hypothetical membrane proteins was observed for the four strains. Moreover, CDS_05140, which encodes for a putative porin, displays the highest gene expression in both attenuated strains. For the attenuated strains, the significant downregulation of map1-related gene expression and upregulation of genes encoding other membrane proteins could be important in the implementation of efficient immune responses after vaccination with attenuated vaccines. Moreover, this study revealed an upregulation of gene expression for 8 genes encoding components of Type IV secretion system and 3 potential effectors, mainly in the virulent Gardel strain. Our transcriptomic study, supported by previous proteomic studies, provides and also confirms new information regarding the characterization of genes involved in E. ruminantium virulence and attenuation mechanisms.


22. HITS-CLIP in various brain areas reveals new targets and new modalities of RNA binding by fragile X mental retardation protein, Nucleic Acids Res. 2018 Apr 14. doi: 10.1093/nar/gky267 (Pubmed: 29668986)
Maurin T, Lebrigand K, Castagnola S, Paquet A, Jarjat M, Popa A, Grossi M, Rage F, Bardoni B

Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is due to the functional deficiency of the fragile X mental retardation protein (FMRP), an RNA-binding protein involved in translational regulation of many messenger RNAs, playing key roles in synaptic morphology and plasticity. To date, no effective treatment for FXS is available. We searched for FMRP targets by HITS-CLIP during early development of multiple mouse brain regions (hippocampus, cortex and cerebellum) at a time of brain development when FMRP is most highly expressed and synaptogenesis reaches a peak. We identified the largest dataset of mRNA targets of FMRP available in brain and we defined their cellular origin. We confirmed the G-quadruplex containing structure as an enriched motif in FMRP RNA targets. In addition to four less represented motifs, our study points out that, in the brain, CTGKA is the prominent motif bound by FMRP, which recognizes it when not engaged in Watson-Crick pairing. All of these motifs negatively modulated the expression level of a reporter protein. While the repertoire of FMRP RNA targets in cerebellum is quite divergent, the ones of cortex and hippocampus are vastly overlapping. In these two brain regions, the Phosphodiesterase 2a (Pde2a) mRNA is a prominent target of FMRP, which modulates its translation and intracellular transport. This enzyme regulates the homeostasis of cAMP and cGMP and represents a novel and attractive therapeutic target to treat FXS.


23. Genome evolution across 1,011 Saccharomyces cerevisiae isolates, Nature. 2018 Apr;556(7701):339-344. doi: 10.1038/s41586-018-0030-5. Epub 2018 Apr 11. (Pubmed: 29643504)
Peter J, De Chiara M, Friedrich A, Yue JX, Pflieger D, Bergström A, Sigwalt A, Barre B, Freel K, Llored A, Cruaud C, Labadie K, Aury JM, Istace B, Lebrigand K, Barbry P, Engelen S, Lemainque A, Wincker P, Liti G, Schacherer J

Large-scale population genomic surveys are essential to explore the phenotypic diversity of natural populations. Here we report the whole-genome sequencing and phenotyping of 1,011 Saccharomyces cerevisiae isolates, which together provide an accurate evolutionary picture of the genomic variants that shape the species-wide phenotypic landscape of this yeast. Genomic analyses support a single 'out-of-China' origin for this species, followed by several independent domestication events. Although domesticated isolates exhibit high variation in ploidy, aneuploidy and genome content, genome evolution in wild isolates is mainly driven by the accumulation of single nucleotide polymorphisms. A common feature is the extensive loss of heterozygosity, which represents an essential source of inter-individual variation in this mainly asexual species. Most of the single nucleotide polymorphisms, including experimentally identified functional polymorphisms, are present at very low frequencies. The largest numbers of variants identified by genome-wide association are copy-number changes, which have a greater phenotypic effect than do single nucleotide polymorphisms. This resource will guide future population genomics and genotype-phenotype studies in this classic model system.


24. Tacrolimus-induced nephrotoxicity in mice is associated with microRNA deregulation, Arch Toxicol. 2018 Jan 23. doi: 10.1007/s00204-018-2158-3 (Pubmed: 29362864)
Vandenbussche C, Van der Hauwaert C, Dewaeles E, Franczak J, Hennino MF, Gnemmi V, Savary G, Tavernier Q, Nottet N, Paquet A, Perrais M, Blum D, Mari B, Pottier N, Glowacki F, Cauffiez C

Although Tacrolimus is an immunosuppressive drug widely used in renal transplantation, its chronic use paradoxically induces nephrotoxic effects, in particular renal fibrosis, which is responsible for chronic allograft dysfunction and represents a major prognostic factor of allograft survival. As molecular pathways and mechanisms involved in Tacrolimus-induced fibrogenic response are poorly elucidated, we assessed whether miRNAs are involved in the nephrotoxic effects mediated by Tacrolimus. Treatment of CD-1 mice with Tacrolimus (1 mg/kg/d for 28 days) resulted in kidney injury and was associated with alteration of a gene expression signature associated with cellular stress, fibrosis and inflammation. Tacrolimus also affected renal miRNA expression, including miRNAs previously involved in fibrotic and inflammatory processes as "fibromirs" such as miR-21-5p, miR-199a-5p and miR-214-3p. In agreement with in vivo data, Renal Proximal Tubular Epithelial cells exposed to Tacrolimus (25 and 50 µM) showed upregulation of miR-21-5p and the concomitant induction of epithelial phenotypic changes, inflammation and oxidative stress. In conclusion, this study suggests for the first time that miRNAs, especially fibromiRs, participate to Tacrolimus-induced nephrotoxic effects. Therefore, targeting miRNAs may be a new therapeutic option to counteract Tacrolimus deleterious effects on kidney.


25. A root-knot nematode small glycine and cysteine-rich secreted effector, MiSGCR1, is involved in plant parasitism., New Phytol. 2018 Jan;217(2):687-699. doi: 10.1111/nph.14837 (Pubmed: 29034957)
Nguyen CN, Perfus-Barbeoch L, Quentin M, Zhao J, Magliano M, Marteu N, Da Rocha M, Nottet N, Abad P, Favery B

Root-knot nematodes, Meloidogyne spp., are obligate endoparasites that maintain a biotrophic relationship with their hosts. They infect roots as microscopic vermiform second-stage juveniles, and establish specialized feeding structures called 'giant-cells', from which they withdraw water and nutrients. The nematode effector proteins secreted in planta are key elements in the molecular dialogue of parasitism. Here, we compared Illumina RNA-seq transcriptomes for M. incognita obtained at various points in the lifecycle, and identified 31 genes more strongly expressed in parasitic stages than in preparasitic juveniles. We then selected candidate effectors for functional characterization. Quantitative real-time PCR and in situ hybridizations showed that the validated differentially expressed genes are predominantly specifically expressed in oesophageal glands of the nematode. We also soaked the nematodes in siRNA to silence these genes and to determine their role in pathogenicity. The silencing of the dorsal gland specific-Minc18876 and its paralogues resulted in a significant, reproducible decrease in the number of mature females with egg masses, demonstrating a potentially important role for the small glycine- and cysteine-rich effector MiSGCR1 in early stages of plant-nematode interaction. Finally, we report that MiSGCR1 suppresses plant cell death induced by bacterial or oomycete triggers of plant defense.


26. CD8+ T cells are essential for the effects of enriched environment on hippocampus-dependent behavior, hippocampal neurogenesis and synaptic plasticity., Brain Behav Immun. 2017 Nov 22. pii: S0889-1591(17)30517-2. doi: 10.1016/j.bbi.2017.11.016. (Pubmed: 29175168)
Zarif H, Nicolas S, Guyot M, Hosseiny S, Lazzari A, Canali MM, Cazareth J, Brau F, Golzne V, Dourneau E, Maillaut M, Luci C, Paquet A, Lebrigand K, Arguel MJ, Daoudlarian D, Heurteaux C, Glaichenhaus N, Chabry J, Guyon A, Petit-Paitel A

Enriched environment (EE) induces plasticity changes in the brain. Recently, CD4+ T cells have been shown to be involved in brain plasticity processes. Here, we show that CD8+ T cells are required for EE-induced brain plasticity in mice, as revealed by measurements of hippocampal volume, neurogenesis in the DG of the hippocampus, spinogenesis and glutamatergic synaptic function in the CA of the hippocampus. As a consequence, EE-induced behavioral benefits depend, at least in part, on CD8+ T cells. In addition, we show that spleen CD8+ T cells from mice housed in standard environment (SE) and EE have different properties in terms of 1) TNFα release after in vitro CD3/CD28 or PMA/Iono stimulation 2) in vitro proliferation properties 3) CD8+ CD44+ CD62Llow and CD62Lhi T cells repartition 4) transcriptomic signature as revealed by RNA sequencing. CD8+ T cells purified from the choroid plexus of SE and EE mice also exhibit different transcriptomic profiles as highlighted by single-cell mRNA sequencing. We show that CD8+ T cells are essential mediators of beneficial EE effects on brain plasticity and cognition. Additionally, we propose that EE differentially primes CD8+ T cells leading to behavioral improvement.


27. Characterization of microRNAs from Arabidopsis galls highlights a role for miR159 in the plant response to the root-knot nematode Meloidogyne incognita, New Phytol. 2017 Sep 14. doi: 10.1111/nph.14717. (Pubmed: 28906559)
Medina C, da Rocha M, Magliano M, Ratpopoulo A, Revel B, Marteu N, Magnone V, Lebrigand K, Cabrera J, Barcala M, Silva AC, Millar A, Escobar C, Abad P, Favery B, Jaubert-Possamai S

Root knot nematodes (RKN) are root parasites that induce the genetic reprogramming of vascular cells into giant feeding cells and the development of root galls. MicroRNAs (miRNAs) regulate gene expression during development and plant responses to various stresses. Disruption of post-transcriptional gene silencing in Arabidopsis ago1 or ago2 mutants decrease the infection rate of RKN suggesting a role for this mechanism in the plant-nematode interaction. By sequencing small RNAs from uninfected Arabidopsis roots and from galls 7 and 14 d post infection with Meloidogyne incognita, we identified 24 miRNAs differentially expressed in gall as putative regulators of gall development. Moreover, strong activity within galls was detected for five miRNA promoters. Analyses of nematode development in an Arabidopsis miR159abc mutant had a lower susceptibility to RKN, suggesting a role for the miR159 family in the plant response to M. incognita. Localization of mature miR159 within the giant and surrounding cells suggested a role in giant cell and gall. Finally, overexpression of miR159 in galls at 14 d post inoculation was associated with the repression of the miR159 target MYB33 which expression is restricted to the early stages of infection. Overall, these results implicate the miR159 in plant responses to RKN.


28. Effects of proton versus photon irradiation on (lymph)angiogenic, inflammatory, proliferative and anti-tumor immune responses in head and neck squamous cell carcinoma., Oncogenesis. 2017 Jul 3;6(7):e354. doi: 10.1038/oncsis.2017.56 (Pubmed: 28671677)
Lupu-Plesu M, Claren A, Martial S, N'Diaye PD, Lebrigand K, Pons N, Ambrosetti D, Peyrottes I, Feuillade J, Hérault J, Dufies M, Doyen J, Pagès G

The proximity of organs at risk makes the treatment of head and neck squamous cell carcinoma (HNSCC) challenging by standard radiotherapy. The higher precision in tumor targeting of proton (P) therapy could promote it as the treatment of choice for HNSCC. Besides the physical advantage in dose deposition, few is known about the biological impact of P versus photons (X) in this setting. To investigate the comparative biological effects of P versus X radiation in HNSCC cells, we assessed the relative biological effectiveness (RBE), viability, proliferation and mRNA levels for genes involved in (lymph)angiogenesis, inflammation, proliferation and anti-tumor immunity. These parameters, particularly VEGF-C protein levels and regulations, were documented in freshly irradiated and/or long-term surviving cells receiving low/high-dose, single (SI)/multiple (MI) irradiations with P/X. The RBE was found to be 1.1 Key (lymph)angiogenesis and inflammation genes were downregulated (except for vegf-c) after P and upregulated after X irradiation in MI surviving cells, demonstrating a more favorable profile after P irradiation. Both irradiation types stimulated vegf-c promoter activity in a NF-κB-dependent transcriptional regulation manner, but at a lesser extent after P, as compared to X irradiation, which correlated with mRNA and protein levels. The cells surviving to MI by P or X generated tumors with higher volume, anarchic architecture and increased density of blood vessels. Increased lymphangiogenesis and a transcriptomic analysis in favor of a more aggressive phenotype were observed in tumors generated with X-irradiated cells. Increased detection of lymphatic vessels in relapsed tumors from patients receiving X radiotherapy was consistent with these findings. This study provides new data about the biological advantage of P, as compared to X irradiation. In addition to its physical advantage in dose deposition, P irradiation may help to improve treatment approaches for HNSCC.


29. A new long noncoding RNA (LncRNA) is induced in cutaneous squamous cell carcinoma and downregulates several anticancer and cell-differentiation genes in mouse., J Biol Chem. 2017 Jun 8. pii: jbc.M117.776260. doi: 10.1074/jbc.M117.776260. [Epub ahead of print] (Pubmed: 28596382)
Ponzio G, Rezzonico R, Bourget I, Allan R, Nottet N, Popa A, Magnone V, Rios G, Mari B, Barbry P

Keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. Although some of the early events involved in this pathology have been identified, the subsequent steps leading to tumor development are poorly defined. We demonstrate here that the development of mouse tumors induced by the concomitant application of a carcinogen and a tumor promoter (7,12 dimethylbenz[a]anthracene [DMBA] and 12-O-tetradecanoylphorbol-13-acetate [TPA], respectively) is associated with the upregulation of a previously uncharacterized long noncoding RNA (lncRNA), termed AK144841. We found that AK144841 expression was absent from normal skin and was specifically stimulated in tumors and highly tumorigenic cells. We also found that AK144841 exists in two variants, one consisting of a large 2-kb transcript composed of four exons and one of a 1.8-kb transcript lacking the second exon. Gain- and loss-of-function studies indicated that AK144841 mainly inhibited gene expression, specifically downregulating the expression of genes of the late-cornified-envelope-1 (Lce1) family involved in epidermal terminal differentiation and of anticancer genes such as Cgref1, Brsk1, Basp1, Dusp5, Btg2, Anpep, Dhrs9, Stfa2, Tpm1, SerpinB2, Cpa4, Crct1, Cryab, Il24, Csf2, and Rgs16. Interestingly, the lack of the second exon significantly decreased AK144841's inhibitory effect on gene expression. We also noted that high AK144841 expression correlated with a low expression of the aforementioned genes and with the tumorigenic potential of cell lines. These findings suggest that AK144841 could contribute to the dedifferentiation program of tumor-forming keratinocytes and to molecular cascades leading to tumor development.


30. Eμ and 3'RR IgH enhancers show hierarchic unilateral dependence in mature B-cells, Sci Rep. 2017 Mar 27;7(1):442. doi: 10.1038/s41598-017-00575-0. (Pubmed: 28348365)
Saintamand A, Vincent-Fabert C, Marquet M, Ghazzaui N, Magnone V, Pinaud E, Cogné M, Denizot Y

Enhancer and super-enhancers are master regulators of cell fate. While they act at long-distances on adjacent genes, it is unclear whether they also act on one another. The immunoglobulin heavy chain (IgH) locus is unique in carrying two super-enhancers at both ends of the constant gene cluster: the 5'Eμ super-enhancer promotes VDJ recombination during the earliest steps of B-cell ontogeny while the 3' regulatory region (3'RR) is essential for late differentiation. Since they carry functional synergies in mature B-cells and physically interact during IgH locus DNA looping, we investigated if they were independent engines of locus remodelling or if their function was more intimately intermingled, their optimal activation then requiring physical contact with each other. Analysis of chromatin marks, enhancer RNA transcription and accessibility in Eμ- and 3'RR-deficient mice show, in mature activated B-cells, an unilateral dependence of this pair of enhancers: while the 3'RR acts in autonomy, Eμ in contrast likely falls under control of the 3'RR.


31. Characterizing isomiR variants within the microRNA-34/449 family, FEBS Lett. 2017 Mar;591(5):693-705. doi: 10.1002/1873-3468.12595. Epub 2017 Feb 28 (Pubmed: 28192603)
Mercey O, Popa A, Cavard A, Paquet A, Chevalier B, Pons N, Magnone V, Zangari J, Brest P, Zaragosi LE, Ponzio G, Lebrigand K, Barbry P, Marcet B

miR-34/449 microRNAs are conserved regulators of multiciliated cell differentiation. Here, we evidence and characterize expression of two isomiR variant sequences from the miR-34/449 family in human airway epithelial cells. These isomiRs differ from their canonical counterparts miR-34b and miR-449c by one supplemental uridine at their 5'-end, leading to a one-base shift in their seed region. Overexpression of canonical miR-34/449 or 5'-isomiR-34/449 induces distinct gene expression profiles and biological effects. However, some target transcripts and functional activities are shared by both canonical microRNAs and isomiRs. Indeed, both repress important targets that result in cell cycle blockage and Notch pathway inhibition. Our findings suggest that 5'-isomiR-34/449 may represent additional mechanisms by which miR-34/449 family finely controls several pathways to drive multiciliogenesis.


32. Rapid decay of engulfed extracellular miRNA by XRN1 exonuclease promotes transient epithelial-mesenchymal transition, Nucleic Acids Res. 2016 Dec 19. pii: gkw1284 (Pubmed: 27994032)
Zangari J, Ilie M, Rouaud F, Signetti L, Ohanna M, Didier R, Roméo B, Goldoni D, Nottet N, Staedel C, Gal J, Mari B, Mograbi B, Hofman P, Brest P

Extracellular vesicles (EVs) have been shown to play an important role in intercellular communication as carriers of DNA, RNA and proteins. While the intercellular transfer of miRNA through EVs has been extensively studied, the stability of extracellular miRNA (ex-miRNA) once engulfed by a recipient cell remains to be determined. Here, we identify the ex-miRNA-directed phenotype to be transient due to the rapid decay of ex-miRNA. We demonstrate that the ex-miR-223-3p transferred from polymorphonuclear leukocytes to cancer cells were functional, as demonstrated by the decreased expression of its target FOXO1 and the occurrence of epithelial-mesenchymal transition reprogramming. We showed that the engulfed ex-miRNA, unlike endogenous miRNA, was unstable, enabling dynamic regulation and a return to a non-invasive phenotype within 8 h. This transient phenotype could be modulated by targeting XRN1/PACMAN exonuclease. Indeed, its silencing was associated with slower decay of ex-miR-223-3p and subsequently prolonged the invasive properties. In conclusion, we showed that the 'steady step' level of engulfed miRNA and its subsequent activity was dependent on the presence of a donor cell in the surroundings to constantly fuel the recipient cell with ex-miRNAs and of XRN1 exonuclease, which is involved in the decay of these imported miRNA.


33. A cost effective 5' selective single cell transcriptome profiling approach with improved UMI design, Nucleic Acids Res. 2016 Dec 9. pii: gkw1242. (Pubmed: 27940562)
Arguel MJ, Lebrigand K, Paquet A, Ruiz Garcia S, Zaragosi LE, Barbry P, Waldmann R

Single cell RNA sequencing approaches are instrumental in studies of cell-to-cell variability. 5' selective transcriptome profiling approaches allow simultaneous definition of the transcription start size and have advantages over 3' selective approaches which just provide internal sequences close to the 3' end. The only currently existing 5' selective approach requires costly and labor intensive fragmentation and cell barcoding after cDNA amplification. We developed an optimized 5' selective workflow where all the cell indexing is done prior to fragmentation. With our protocol, cell indexing can be performed in the Fluidigm C1 microfluidic device, resulting in a significant reduction of cost and labor. We also designed optimized unique molecular identifiers that show less sequence bias and vulnerability towards sequencing errors resulting in an improved accuracy of molecule counting. We provide comprehensive experimental workflows for Illumina and Ion Proton sequencers that allow single cell sequencing in a cost range comparable to qPCR assays.


34. Membrane-bound ICAM-1 contributes to the onset of proinvasive tumor stroma by controlling acto-myosin contractility in carcinoma-associated fibroblasts, Oncotarget. 2016 Nov 25. doi: 10.18632/oncotarget.13610. (Pubmed: 27901489)
Bonan S, Albrengues J, Grasset E, Kuzet SE, Nottet N, Bourget I, Bertero T, Mari B, Meneguzzi G, Gaggioli C

Acto-myosin contractility in carcinoma-associated fibroblasts leads to assembly of the tumor extracellular matrix. The pro-inflammatory cytokine LIF governs fibroblast activation in cancer by regulating the myosin light chain 2 activity. So far, however, how LIF mediates cytoskeleton contractility remains unknown. Using phenotypic screening assays based on knock-down of LIF-dependent genes in fibroblasts, we identified the glycoprotein ICAM-1 as a crucial regulator of stroma fibroblast proinvasive matrix remodeling. We demonstrate that the membrane-bound ICAM-1 isoform is necessary and sufficient to promote inflammation-dependent extracellular matrix contraction, which favors cancer cell invasion. Indeed, ICAM-1 mediates generation of acto-myosin contractility downstream of the Src kinases in stromal fibroblasts. Moreover, acto-myosin contractility regulates ICAM-1 expression by establishing a positive feedback signaling. Thus, targeting stromal ICAM-1 might constitute a possible therapeutic mean to counteract tumor cell invasion and dissemination.


35. Copy-number analysis identified new prognostic marker in acute myeloid leukemia., Leukemia. 2016 Nov 4. doi: 10.1038/leu.2016.265. (Pubmed: 27686867)
Nibourel O, Guihard S, Roumier C, Pottier N, Terre C, Paquet A, Peyrouze P, Geffroy S, Quentin S, Alberdi A, Abdelali RB, Renneville A, Demay C, Celli-Lebras K, Barbry P, Quesnel B, Castaigne S, Dombret H, Soulier J, Preudhomme C, Cheok MH

Recent advances in genomic technologies have revolutionized acute myeloid leukemia (AML) understanding by identifying potential novel actionable genomic alterations. Consequently, current risk stratification at diagnosis not only relies on cytogenetics, but also on the inclusion of several of these abnormalities. Despite this progress, AML remains a heterogeneous and complex malignancy with variable response to current therapy. Although copy-number alterations (CNAs) are accepted prognostic markers in cancers, large-scale genomic studies aiming at identifying specific prognostic CNA-based markers in AML are still lacking. Using 367 AML, we identified four recurrent CNA on chromosomes 11 and 21 that predicted outcome even after adjusting for standard prognostic risk factors and potentially delineated two new subclasses of AML with poor prognosis. ERG amplification, the most frequent CNA, was related to cytarabine resistance, a cornerstone drug of AML therapy. These findings were further validated in The Cancer Genome Atlas data. Our results demonstrate that specific CNA are of independent prognostic relevance, and provide new molecular information into the genomic basis of AML and cytarabine response. Finally, these CNA identified two potential novel risk groups of AML, which when confirmed prospectively, may improve the clinical risk stratification and potentially the AML outcome.Leukemia advance online publication, 4 November 2016; doi:10.1038/leu.2016.265.


36. miR-200 family controls late steps of postnatal forebrain neurogenesis via Zeb2 inhibition., Sci Rep. 2016 Oct 21;6:35729. doi: 10.1038/srep35729. (Pubmed: 27767083)
Beclin C, Follert P, Stappers E, Barral S, Nathalie C, de Chevigny A, Magnone V, Lebrigand K, Bissels U, Huylebroeck D, Bosio A, Barbry P, Seuntjens E, Cremer H

During neurogenesis, generation, migration and integration of the correct numbers of each neuron sub-type depends on complex molecular interactions in space and time. MicroRNAs represent a key control level allowing the flexibility and stability needed for this process. Insight into the role of this regulatory pathway in the brain is still limited. We performed a sequential experimental approach using postnatal olfactory bulb neurogenesis in mice, starting from global expression analyses to the investigation of functional interactions between defined microRNAs and their targets. Deep sequencing of small RNAs extracted from defined compartments of the postnatal neurogenic system demonstrated that the miR-200 family is specifically induced during late neuronal differentiation stages. Using in vivo strategies we interfered with the entire miR-200 family in loss- and gain-of-function settings, showing a role of miR-200 in neuronal maturation. This function is mediated by targeting the transcription factor Zeb2. Interestingly, so far functional interaction between miR-200 and Zeb2 has been exclusively reported in cancer or cultured stem cells. Our data demonstrate that this regulatory interaction is also active during normal neurogenesis.


37. Depletion of the fragile X mental retardation protein in embryonic stem cells alters the kinetics of neurogenesis., Stem Cells. 2016 Sep 24. doi: 10.1002/stem.2505. (Pubmed: 27664080)
Khalfallah O, Jarjat M, Davidovic L, Nottet N, Cestèle S, Mantegazza M, Bardoni B

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability (ID) and a leading cause of autism. FXS is due to the silencing of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein mainly involved in translational control, dendritic spine morphology and synaptic plasticity. Despite extensive studies, there is currently no cure for FXS. With the purpose to decipher the initial molecular events leading to this pathology, we developed a stem-cell-based disease model by knocking-down the expression of Fmr1 in mouse embryonic stem cells (ESCs). Repressing FMRP in ESCs increased the expression of amyloid precursor protein (APP) and Ascl1. When inducing neuronal differentiation, βIII-tubulin, p27kip1 , NeuN and NeuroD1 were up-regulated, leading to an accelerated neuronal differentiation, that was partially compensated at later stages. Interestingly, we observed that neurogenesis is also accelerated in the embryonic brain of Fmr1-knockout (KO) mice, indicating that our cellular model recapitulates the molecular alterations present in vivo. Importantly, we rescued the main phenotype of the Fmr1 knockdown cell line, not only by reintroducing FMRP but also by pharmacologically targeting APP processing, showing the role of this protein in the pathophysiology of FXS during the earliest steps of neurogenesis. Our work allows to define an early therapeutic window but also to identify more effective molecules for treating this disorder. This article is protected by copyright. All rights reserved.


38. RiboProfiling: a Bioconductor package for standard Ribo-seq pipeline processing., F1000Res. 2016 Jun 9;5:1309. doi: 10.12688/f1000research.8964.1. eCollection 2016. (Pubmed: 27347386)
Popa A, Lebrigand K, Paquet A, Nottet N, Robbe-Sermesant K, Waldmann R, Barbry P

The ribosome profiling technique (Ribo-seq) allows the selective sequencing of translated RNA regions. Recently, the analysis of genomic sequences associated to Ribo-seq reads has been widely employed to assess their coding potential. These analyses led to the identification of differentially translated transcripts under different experimental conditions, and/or ribosome pausing on codon motifs. In the context of the ever-growing need for tools analyzing Ribo-seq reads, we have developed 'RiboProfiling', a new Bioconductor open-source package. 'RiboProfiling' provides a full pipeline to cover all key steps for the analysis of ribosome footprints. This pipeline has been implemented in a single R workflow. The package takes an alignment (BAM) file as input and performs ribosome footprint quantification at a transcript level. It also identifies footprint accumulation on particular amino acids or multi amino-acids motifs. Report summary graphs and data quantification are generated automatically. The package facilitates quality assessment and quantification of Ribo-seq experiments. Its implementation in Bioconductor enables the modeling and statistical analysis of its output through the vast choice of packages available in R. This article illustrates how to identify codon-motifs accumulating ribosome footprints, based on data from Escherichia coli.


39. MicroRNA-375/SEC23A as biomarkers of the in vitro efficacy of vandetanib., Oncotarget. 2016 May 24;7(21):30461-78. doi: 10.18632/oncotarget.8458. (Pubmed: 27036030)
Lassalle S, Zangari J, Popa A, Ilie M, Hofman V, Long E, Patey M, Tissier F, Belléannée G, Trouette H, Catargi B, Peyrottes I, Sadoul JL, Bordone O, Bonnetaud C, Butori C, Bozec A, Guevara N, Santini J, Hénaoui IS, Lemaire G, Blanck O, Vielh P, Barbry P, Mari B, Brest P, Hofman P

In this study, we performed microRNA (miRNA) expression profiling on a large series of sporadic and hereditary forms of medullary thyroid carcinomas (MTC). More than 60 miRNAs were significantly deregulated in tumor vs adjacent non-tumor tissues, partially overlapping with results of previous studies. We focused our attention on the strongest up-regulated miRNA in MTC samples, miR-375, the deregulation of which has been previously observed in a variety of human malignancies including MTC. We identified miR-375 targets by combining gene expression signatures from human MTC (TT) and normal follicular (Nthy-ori 3-1) cell lines transfected with an antagomiR-375 inhibitor or a miR-375 mimic, respectively, and from an in silico analysis of thyroid cell lines of Cancer Cell Line Encyclopedia datasets. This approach identified SEC23A as a bona fide miR-375 target, which we validated by immunoblotting and immunohistochemistry of non-tumor and pathological thyroid tissue. Furthermore, we observed that miR-375 overexpression was associated with decreased cell proliferation and synergistically increased sensitivity to vandetanib, the clinically relevant treatment of metastatic MTC. We found that miR-375 increased PARP cleavage and decreased AKT phosphorylation, affecting both cell proliferation and viability. We confirmed these results through SEC23A direct silencing in combination with vandetanib, highlighting the importance of SEC23A in the miR-375-associated increased sensitivity to vandetanib.Since the combination of increased expression of miR-375 and decreased expression of SEC23A point to sensitivity to vandetanib, we question if the expression levels of miR-375 and SEC23A should be evaluated as an indicator of eligibility for treatment of MTC patients with vandetanib.


40. Comparative Genomic Analysis of Drechmeria coniospora Reveals Core and Specific Genetic Requirements for Fungal Endoparasitism of Nematodes., PLoS Genet. 2016 May 6;12(5):e1006017. doi: 10.1371/journal.pgen.1006017. eCollection 2016. (Pubmed: 27153332)
Lebrigand K, He le D, Thakur N, Arguel MJ, Polanowska J, Henrissat B, Record E, Magdelenat G, Barbe V, Raffaele S, Barbry P, Ewbank JJ

Drechmeria coniospora is an obligate fungal pathogen that infects nematodes via the adhesion of specialized spores to the host cuticle. D. coniospora is frequently found associated with Caenorhabditis elegans in environmental samples. It is used in the study of the nematode's response to fungal infection. Full understanding of this bi-partite interaction requires knowledge of the pathogen's genome, analysis of its gene expression program and a capacity for genetic engineering. The acquisition of all three is reported here. A phylogenetic analysis placed D. coniospora close to the truffle parasite Tolypocladium ophioglossoides, and Hirsutella minnesotensis, another nematophagous fungus. Ascomycete nematopathogenicity is polyphyletic; D. coniospora represents a branch that has not been molecularly characterized. A detailed in silico functional analysis, comparing D. coniospora to 11 fungal species, revealed genes and gene families potentially involved in virulence and showed it to be a highly specialized pathogen. A targeted comparison with nematophagous fungi highlighted D. coniospora-specific genes and a core set of genes associated with nematode parasitism. A comparative gene expression analysis of samples from fungal spores and mycelia, and infected C. elegans, gave a molecular view of the different stages of the D. coniospora lifecycle. Transformation of D. coniospora allowed targeted gene knock-out and the production of fungus that expresses fluorescent reporter genes. It also permitted the initial characterisation of a potential fungal counter-defensive strategy, involving interference with a host antimicrobial mechanism. This high-quality annotated genome for D. coniospora gives insights into the evolution and virulence of nematode-destroying fungi. Coupled with genetic transformation, it opens the way for molecular dissection of D. coniospora physiology, and will allow both sides of the interaction between D. coniospora and C. elegans, as well as the evolutionary arms race that exists between pathogen and host, to be studied.


41. Sequential activation and distinct functions for distal and proximal modules within the IgH 3' regulatory region., Proc Natl Acad Sci U S A. 2016 Feb 1. pii: 201514090 (Pubmed: 26831080)
Garot A, Marquet M, Saintamand A, Bender S, Le Noir S, Rouaud P, Carrion C1, Oruc Z, Bébin AG, Moreau J, Lebrigand K, Denizot Y, Alt FW, Cogné M, Pinaud E

As a master regulator of functional Ig heavy chain (IgH) expression, the IgH 3' regulatory region (3'RR) controls multiple transcription events at various stages of B-cell ontogeny, from newly formed B cells until the ultimate plasma cell stage. The IgH 3'RR plays a pivotal role in early B-cell receptor expression, germ-line transcription preceding class switch recombination, interactions between targeted switch (S) regions, variable region transcription before somatic hypermutation, and antibody heavy chain production, but the functional ranking of its different elements is still inaccurate, especially that of its evolutionarily conserved quasi-palindromic structure. By comparing relevant previous knockout (KO) mouse models (3'RR KO and hs3b-4 KO) to a novel mutant devoid of the 3'RR quasi-palindromic region (3'PAL KO), we pinpointed common features and differences that specify two distinct regulatory entities acting sequentially during B-cell ontogeny. Independently of exogenous antigens, the 3'RR distal part, including hs4, fine-tuned B-cell receptor expression in newly formed and naïve B-cell subsets. At mature stages, the 3'RR portion including the quasi-palindrome dictated antigen-dependent locus remodeling (global somatic hypermutation and class switch recombination to major isotypes) in activated B cells and antibody production in plasma cells.


42. SENS-IS, a 3D reconstituted epidermis based model for quantifying chemical sensitization potency: Reproducibility and predictivity results from an inter-laboratory study., Toxicol In Vitro. 2016 Jan 18;32:248-260. doi: 10.1016/j.tiv.2016.01.007. (Pubmed: 26795242)
Cottrez F, Boitel E, Ourlin JC, Peiffer JL, Fabre I, Henaoui IS, Mari B, Vallauri A, Paquet A, Barbry P, Auriault C, Aeby P, Groux H

The SENS-IS test protocol for the in vitro detection of sensitizers is based on a reconstructed human skin model (Episkin) as the test system and on the analysis of the expression of a large panel of genes. Its excellent performance was initially demonstrated with a limited set of test chemicals. Further studies (described here) were organized to confirm these preliminary results and to obtain a detailed statistical analysis of the predictive capacity of the assay. A ring-study was thus organized and performed within three laboratories, using a test set of 19 blind coded chemicals. Data analysis indicated that the assay is robust, easily transferable and offers high predictivity and excellent within- and between-laboratories reproducibility. To further evaluate the predictivity of the test protocol according to Cooper statistics a comprehensive test set of 150 chemicals was then analyzed. Again, data analysis confirmed the excellent capacity of the SENS-IS assay for predicting both hazard and potency characteristics, confirming that this assay should be considered as a serious alternative to the available in vivo sensitization tests.


43. Pateamine A-sensitive ribosome profiling reveals the scope of translation in mouse embryonic stem cells., BMC Genomics. 2016 Jan 14;17(1):52. doi: 10.1186/s12864-016-2384-0. (Pubmed: 26764022)
Popa A, Lebrigand K, Barbry P, Waldmann R

BACKGROUND: Open reading frames are common in long noncoding RNAs (lncRNAs) and 5'UTRs of protein coding transcripts (uORFs). The question of whether those ORFs are translated was recently addressed by several groups using ribosome profiling. Most of those studies concluded that certain lncRNAs and uORFs are translated, essentially based on computational analysis of ribosome footprints. However, major discrepancies remain on the scope of translation and the translational status of individual ORFs. In consequence, further criteria are required to reliably identify translated ORFs from ribosome profiling data. RESULTS: We examined the effect of the translation inhibitors pateamine A, harringtonine and puromycin on murine ES cell ribosome footprints. We found that pateamine A, a drug that targets eIF4A, allows a far more accurate identification of translated sequences than previously used drugs and computational scoring schemes. Our data show that at least one third but less than two thirds of ES cell lncRNAs are translated. We also identified translated uORFs in hundreds of annotated coding transcripts including key pluripotency transcripts, such as dicer, lin28, trim71, and ctcf. CONCLUSION: Pateamine A inhibition data clearly increase the precision of the detection of translated ORFs in ribosome profiling experiments. Our data show that translation of lncRNAs and uORFs in murine ES cells is rather common although less pervasive than previously suggested. The observation of translated uORFs in several key pluripotency transcripts suggests that translational regulation by uORFs might be part of the network that defines mammalian stem cell identity.


44. RNY-derived small RNAs as a signature of coronary artery disease., BMC Med. 2015 Oct 8;13:259. doi: 10.1186/s12916-015-0489-y. (Pubmed: 26449324)
Repetto E, Lichtenstein L, Hizir Z, Tekaya N, Benahmed M, Ruidavets JB, Zaragosi LE, Perret B, Bouchareychas L, Genoux A, Lotte R, Ruimy R, Ferrières J, Barbry P, Martinez LO, Trabucchi M

Data from next generation sequencing technologies uncovered the existence of many classes of small RNAs. Recent studies reported that small RNAs are released by cells and can be detected in the blood. In this report, we aimed to discover the occurrence of novel circulating small RNAs in coronary artery disease (CAD). METHODS: We used high-throughput sequencing of small RNAs from human and mouse apoptotic primary macrophages, and analyzed the data by empirical Bayes moderated t-statistics to assess differential expression and the Benjamini and Hochberg method to control the false discovery rate. Results were then confirmed by Northern blot and RT-qPCR in foam cells and in two animal models for atherosclerosis, namely ApoE(-/-) and Ldlr(-/-) mouse lines. Quantitative RT-PCR to detect identified small RNAs, the RNY-derived small RNAs, was performed using sera of 263 patients with CAD compared to 514 matched healthy controls; the Student t-test was applied to statistically assess differences. Associations of small RNAs with clinical characteristics and biological markers were tested using Spearman's rank correlations, while multivariate logistic regressions were performed to test the statistical association of small RNA levels with CAD. RESULTS: Here, we report that, in macrophages stimulated with pro-apoptotic or pro-atherogenic stimuli, the Ro-associated non-coding RNAs, called RNYs or Y-RNAs, are processed into small RNAs (~24-34 nt) referred to as small-RNYs (s-RNYs), including s-RNY1-5p processed from RNY1. A significant upregulation of s-RNY expression was found in aortic arches and blood plasma from ApoE(-/-) and Ldlr(-/-) mice and in serum from CAD patients (P <0.001). Biostatistical analysis revealed a positive association of s-RNY1-5p with hs-CRP and ApoB levels; however, no statistical interaction was found between either of these two markers and s-RNY1-5p in relation to the CAD status. Levels of s-RNY1-5p were also independent from statin and fibrate therapies. CONCLUSION: Our results position the s-RNY1-5p as a relevant novel independent diagnostic biomarker for atherosclerosis-related diseases. Measurement of circulating s-RNY expression would be a valuable companion diagnostic to monitor foam cell apoptosis during atherosclerosis pathogenesis and to evaluate patient's responsiveness to future therapeutic strategies aiming to attenuate apoptosis in foam cells in advanced atherosclerotic lesions.


45. Knockout of Vdac1 activates hypoxia-inducible factor through reactive oxygen species generation and induces tumor growth by promoting metabolic reprogramming and inflammation., Cancer Metab. 2015 Aug 26;3:8. doi: 10.1186/s40170-015-0133-5. eCollection 2015. (Pubmed: 26322231)
Brahimi-Horn MC, Giuliano S, Saland E, Lacas-Gervais S, Sheiko T, Pelletier J, Bourget I, Bost F, Féral C, Boulter E, Tauc M, Ivan M, Garmy-Susini B, Popa A, Mari B, Sarry JE, Craigen WJ, Pouysségur J, Mazure NM

Mitochondria are more than just the powerhouse of cells; they dictate if a cell dies or survives. Mitochondria are dynamic organelles that constantly undergo fusion and fission in response to environmental conditions. We showed previously that mitochondria of cells in a low oxygen environment (hypoxia) hyperfuse to form enlarged or highly interconnected networks with enhanced metabolic efficacy and resistance to apoptosis. Modifications to the appearance and metabolic capacity of mitochondria have been reported in cancer. However, the precise mechanisms regulating mitochondrial dynamics and metabolism in cancer are unknown. Since hypoxia plays a role in the generation of these abnormal mitochondria, we questioned if it modulates mitochondrial function. The mitochondrial outer-membrane voltage-dependent anion channel 1 (VDAC1) is at center stage in regulating metabolism and apoptosis. We demonstrated previously that VDAC1 was post-translationally C-terminal cleaved not only in various hypoxic cancer cells but also in tumor tissues of patients with lung adenocarcinomas. Cells with enlarged mitochondria and cleaved VDAC1 were also more resistant to chemotherapy-stimulated cell death than normoxic cancer cells. RESULTS: Transcriptome analysis of mouse embryonic fibroblasts (MEF) knocked out for Vdac1 highlighted alterations in not only cancer and inflammatory pathways but also in the activation of the hypoxia-inducible factor-1 (HIF-1) signaling pathway in normoxia. HIF-1α was stable in normoxia due to accumulation of reactive oxygen species (ROS), which decreased respiration and glycolysis and maintained basal apoptosis. However, in hypoxia, activation of extracellular signal-regulated kinase (ERK) in combination with maintenance of respiration and increased glycolysis counterbalanced the deleterious effects of enhanced ROS, thereby allowing Vdac1 (-/-) MEF to proliferate better than wild-type MEF in hypoxia. Allografts of RAS-transformed Vdac1 (-/-) MEF exhibited stabilization of both HIF-1α and HIF-2α, blood vessel destabilization, and a strong inflammatory response. Moreover, expression of Cdkn2a, a HIF-1-target and tumor suppressor gene, was markedly decreased. Consequently, RAS-transformed Vdac1 (-/-) MEF tumors grew faster than wild-type MEF tumors. CONCLUSIONS: Metabolic reprogramming in cancer cells may be regulated by VDAC1 through vascular destabilization and inflammation. These findings provide new perspectives into the understanding of VDAC1 in the function of mitochondria not only in cancer but also in inflammatory diseases.


46. Elucidation of IgH 3' region regulatory role during class switch recombination via germline deletion., Nat Commun. 2015 May 11;6:7084. doi: 10.1038/ncomms8084. (Pubmed: 25959683)
Saintamand A, Rouaud P, Saad F, Rios G, Cogné M, Denizot Y

In mature B cells, class switch recombination (CSR) replaces the expressed constant Cμ gene with a downstream C(H) gene. How the four transcriptional enhancers of the IgH 3' regulatory region (3'RR) control CSR remains an open question. We have investigated IgG1 CSR in 3'RR-deficient mice. Here we show that the 3'RR enhancers target the S(γ1) acceptor region (and poorly the S(μ) donor region) by acting on epigenetic marks, germline transcription, paused RNA Pol II recruitment, R loop formation, AID targeting and double-strand break generation. In contrast, location and diversity of S(μ)-S(γ1) junctions are not affected by deletion of the 3'RR enhancers. Thus, the 3'RR controls the first steps of CSR by priming the S acceptor region but is not implicated in the choice of the end-joining pathway.


47. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes., Oncogene. 2014 Sep 29. doi: 10.1038/onc.2014.300. (Pubmed: 25263437)
Cui H, Seubert B, Stahl E, Dietz H, Reuning U, Moreno-Leon L, Ilie M, Hofman P, Nagase H, Mari B, Krüger A

Tissue inhibitor of metalloproteinases-1 (TIMP-1) recently emerged as a pro-metastatic factor highly associated with poor prognosis in a number of cancers. This correlation seemed paradox as TIMP-1 is best described as an inhibitor of pro-tumourigenic matrix metalloproteinases. Only recently, TIMP-1 has been revealed as a signalling molecule that can regulate cancer progression independent of its inhibitory properties. In the present study, we demonstrate that an increase of both exogenous and endogenous TIMP-1 led to the upregulation of miR-210 in a CD63/PI3K/AKT/HIF-1-dependent pathway in lung adenocarcinoma cells. TIMP-1 induced P110/P85 PI3K-signalling and AKT phosphorylation. It also led to increase of HIF-1α protein levels positively correlating with HIF-1-regulated mRNA expression and upregulation of the microRNA miR-210. Downstream targets of miR-210, namely FGFRL1, E2F3, VMP-1, RAD52 and SDHD, were decreased in the presence of TIMP-1. Upon the overexpression of TIMP-1 in tumour cells, miR-210 was accumulated in exosomes in vitro and in vivo. These exosomes promoted tube formation activity in human umbilical vein endothelial cell (HUVECs), which was reflected in increased angiogenesis in A549L-derived tumour xenografts. Activation and elevation of PI3K, AKT, HIF-1A and miR-210 in tumours additionally confirmed our in vitro data. This new pro-tumourigenic signalling function of TIMP-1 may explain why elevated TIMP-1 levels in lung cancer patients are highly correlated with poor prognosis.Oncogene advance online publication, 29 September 2014; doi:10.1038/onc.2014.300.


48. MicroRNA target identification: lessons from hypoxamiRs., Antioxid Redox Signal. 2014 Sep 10;21(8):1249-68. doi: 10.1089/ars.2013.5648. Epub 2014 Feb 3. (Pubmed: 24111877)
Bertero T, Robbe-Sermesant K, Le Brigand K, Ponzio G, Pottier N, Rezzonico R, Mazure NM, Barbry P, Mari B

SIGNIFICANCE: MicroRNAs (miRNAs) are small noncoding RNAs that have emerged as key regulators of many physiological and pathological processes, including those relevant to hypoxia such as cancer, neurological dysfunctions, myocardial infarction, and lung diseases. RECENT ADVANCES: During the last 5 years, miRNAs have been shown to play a role in the regulation of the cellular response to hypoxia. The identification of several bona fide targets of these hypoxamiRs has underlined their pleiotropic functions and the complexity of the molecular rules directing miRNA::target transcript pairing. CRITICAL ISSUES: This review outlines the main in silico and experimental approaches used to identify the targetome of hypoxamiRs and presents new recent relevant methodologies for future studies. FUTURE DIRECTIONS: Since hypoxia plays key roles in many pathophysiological conditions, the precise characterization of regulatory hypoxamiRs networks will be instrumental both at a fundamental level and for their future potential therapeutic applications.


49. miR-193b/365a cluster controls progression of epidermal squamous cell carcinoma., Carcinogenesis. 2014 May;35(5):1110-20. doi: 10.1093/carcin/bgt490. Epub 2013 Dec 28. (Pubmed: 24374827)
Gastaldi C, Bertero T, Xu N, Bourget-Ponzio I, Lebrigand K, Fourre S, Popa A, Cardot-Leccia N, Meneguzzi G, Sonkoly E, Pivarcsi A, Mari B, Barbry P, Ponzio G, Rezzonico R

Incidence of cutaneous squamous cell carcinomas (cSCCs) constantly increases in the Caucasian population. Developing preferentially on precancerous lesions such as actinic keratoses due to chronic sunlight exposure, cSCCs result from the malignant transformation of keratinocytes. Although a resection of the primary tumor is usually curative, a subset of aggressive cSCCs shows a high risk of recurrence and metastases. The characterization of the molecular dysfunctions involved in cSCC development should help to identify new relevant targets against these aggressive cSCCs. In that context, we have used small RNA sequencing to identify 100 microRNAs (miRNAs) whose expression was altered during chemically induced mouse skin tumorigenesis. The decreased expression of the miR-193b/365a cluster during tumor progression suggests a tumor suppressor role. Ectopic expression of these miRNAs in tumor cells indeed inhibited their proliferation, clonogenic potential and migration, which were stimulated in normal keratinocytes when these miRNAs were blocked with antisense oligonucleotides. A combination of in silico predictions and transcriptome analyses identified several target genes of interest. We validated KRAS and MAX as direct targets of miR-193b and miR-365a. Repression of these targets using siRNAs mimicked the effects of miR-193b and miR-365a, suggesting that these genes might mediate, at least in part, the tumor-suppressive action of these miRNAs.


50. FibromiRs: translating molecular discoveries into new anti-fibrotic drugs., Trends Pharmacol Sci. 2014 Mar;35(3):119-26. doi: 10.1016/j.tips.2014.01.003. Epub 2014 Feb 19. (Pubmed: 24560301)
Pottier N, Cauffiez C, Perrais M, Barbry P, Mari B

Fibrosis, or tissue scarring, is defined as excessive and persistent accumulation of extracellular matrix components in response to chronic tissue injury. Fibrosis is a pathological feature characterizing nearly all forms of chronic organ failure. Fibroproliferative disorders of liver, kidney, heart, and lung are frequently associated with considerable morbidity and mortality worldwide. Limited therapeutic options are available; none is yet effective in stopping the ultimate progression of the disease. This has prompted investigations for new molecular targets. Recent studies have shown aberrant expression of miRNAs (fibromiRs) during the development of fibrosis. The challenge now is to understand how these aberrantly expressed miRNAs collaborate to drive fibrogenesis. Progress in understanding how fibromiRs contribute to tissue fibrosis is necessary to translate molecular discoveries into new therapeutics for fibroproliferative diseases.


51. Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining., PLoS Pathog. 2013 Oct;9(10):e1003745. doi: 10.1371/journal.ppat.1003745. Epub 2013 Oct 31. (Pubmed: 24204279)
Danchin EG, Arguel MJ, Campan-Fournier A, Perfus-Barbeoch L, Magliano M, Rosso MN, Da Rocha M, Da Silva C, Nottet N, Labadie K, Guy J, Artiguenave F, Abad P

Root-knot nematodes are globally the most aggressive and damaging plant-parasitic nematodes. Chemical nematicides have so far constituted the most efficient control measures against these agricultural pests. Because of their toxicity for the environment and danger for human health, these nematicides have now been banned from use. Consequently, new and more specific control means, safe for the environment and human health, are urgently needed to avoid worldwide proliferation of these devastating plant-parasites. Mining the genomes of root-knot nematodes through an evolutionary and comparative genomics approach, we identified and analyzed 15,952 nematode genes conserved in genomes of plant-damaging species but absent from non target genomes of chordates, plants, annelids, insect pollinators and mollusks. Functional annotation of the corresponding proteins revealed a relative abundance of putative transcription factors in this parasite-specific set compared to whole proteomes of root-knot nematodes. This may point to important and specific regulators of genes involved in parasitism. Because these nematodes are known to secrete effector proteins in planta, essential for parasitism, we searched and identified 993 such effector-like proteins absent from non-target species. Aiming at identifying novel targets for the development of future control methods, we biologically tested the effect of inactivation of the corresponding genes through RNA interference. A total of 15 novel effector-like proteins and one putative transcription factor compatible with the design of siRNAs were present as non-redundant genes and had transcriptional support in the model root-knot nematode Meloidogyne incognita. Infestation assays with siRNA-treated M. incognita on tomato plants showed significant and reproducible reduction of the infestation for 12 of the 16 tested genes compared to control nematodes. These 12 novel genes, showing efficient reduction of parasitism when silenced, constitute promising targets for the development of more specific and safer control means.


52. A novel role for the RNA-binding protein FXR1P in myoblasts cell-cycle progression by modulating p21/Cdkn1a/Cip1/Waf1 mRNA stability., PLoS Genet. 2013 Mar;9(3):e1003367. doi: 10.1371/journal.pgen.1003367. Epub 2013 Mar 21. (Pubmed: 23555284)
Davidovic L, Durand N, Khalfallah O, Tabet R, Barbry P, Mari B, Sacconi S, Moine H, Bardoni B

The Fragile X-Related 1 gene (FXR1) is a paralog of the Fragile X Mental Retardation 1 gene (FMR1), whose absence causes the Fragile X syndrome, the most common form of inherited intellectual disability. FXR1P plays an important role in normal muscle development, and its absence causes muscular abnormalities in mice, frog, and zebrafish. Seven alternatively spliced FXR1 transcripts have been identified and two of them are skeletal muscle-specific. A reduction of these isoforms is found in myoblasts from Facio-Scapulo Humeral Dystrophy (FSHD) patients. FXR1P is an RNA-binding protein involved in translational control; however, so far, no mRNA target of FXR1P has been linked to the drastic muscular phenotypes caused by its absence. In this study, gene expression profiling of C2C12 myoblasts reveals that transcripts involved in cell cycle and muscular development pathways are modulated by Fxr1-depletion. We observed an increase of p21--a regulator of cell-cycle progression--in Fxr1-knocked-down mouse C2C12 and FSHD human myoblasts. Rescue of this molecular phenotype is possible by re-expressing human FXR1P in Fxr1-depleted C2C12 cells. FXR1P muscle-specific isoforms bind p21 mRNA via direct interaction with a conserved G-quadruplex located in its 3' untranslated region. The FXR1P/G-quadruplex complex reduces the half-life of p21 mRNA. In the absence of FXR1P, the upregulation of p21 mRNA determines the elevated level of its protein product that affects cell-cycle progression inducing a premature cell-cycle exit and generating a pool of cells blocked at G0. Our study describes a novel role of FXR1P that has crucial implications for the understanding of its role during myogenesis and muscle development, since we show here that in its absence a reduced number of myoblasts will be available for muscle formation/regeneration, shedding new light into the pathophysiology of FSHD.


53. Dkk3 is a component of the genetic circuitry regulating aldosterone biosynthesis in the adrenal cortex., Hum Mol Genet. 2012 Nov 15;21(22):4922-9. doi: 10.1093/hmg/dds333. Epub 2012 Aug 23. (Pubmed: 22918120)
El Wakil A, Bandulik S, Guy N, Bendahhou S, Zennaro MC, Niehrs C, Mari B, Warth R, Barhanin J, Lalli E

Primary aldosteronism (PA, autonomous aldosterone production from the adrenal cortex) causes the most common form of secondary arterial hypertension (HT), which is also the most common curable form of HT. Recent studies have highlighted an important role of mutations in genes encoding potassium channels in the pathogenesis of PA, both in human disease and in animal models. Here, we have exploited the unique features of the hyperaldosteronemic phenotype of Kcnk3 null mice, which is dependent on sexual hormones, to identify genes whose expression is modulated in the adrenal gland according to the dynamic hyperaldosteronemic phenotype of those animals. Genetic inactivation of one of the genes identified by our strategy, dickkopf-3 (Dkk3), whose expression is increased by calcium influx into adrenocortical cells, in the Kcnk3 null background results in the extension of the low-renin, potassium-rich diet insensitive hyperaldosteronemic phenotype to the male sex. Compound Kcnk3/Dkk3 animals display an increased expression of Cyp11b2, the rate-limiting enzyme for aldosterone biosynthesis in the adrenal zona glomerulosa (ZG). Our data show that Dkk3 can act as a modifier gene in a mouse model for altered potassium channel function and suggest its potential involvement in human PA syndromes.


54. Mantle cell lymphoma-like lymphomas in c-myc-3'RR/p53+/- mice and c-myc-3'RR/Cdk4R24C mice: differential oncogenic mechanisms but similar cellular origin., Oncotarget. 2012 May;3(5):586-93. (Pubmed: 22592113)
Rouaud P, Fiancette R, Vincent-Fabert C, Magnone V, Cogné M, Dubus P, Denizot Y

Mantle cell lymphoma (MCL) is a malignant lymphoproliferative B-cell disorder that does not occur spontaneously in mice but experimental mice model have been developed. Recently two different mice models prone to develop MCL-like lymphomas were generated: c-myc-3'RR/Cdk4(R24C) mice and c-myc-3'RR/p53+/- mice. Comparison of their gene expression profiles does not highlight specific differences other than those in relation with their specific mutational status (i.e., Cdk4(R24C) mutation or p53 mutations). We propose that similarly to typical human MCL and its blastoid or cyclin-D1 variants that correspond to the same genetic entity, MCL-like lymphomas of c-myc-3'RR/ p53+/- mice and c-myc-3'RR/Cdk4(R24C) mice represent a spectrum of the same entity.


55. Distinct epithelial gene expression phenotypes in childhood respiratory allergy., Eur Respir J. 2012 May;39(5):1197-205. Epub 2011 Oct 17. (Pubmed: 22005912)
Giovannini-Chami L, Marcet B, Moreilhon C, Chevalier B, Illie MI, Lebrigand K, Robbe-Sermesant K, Bourrier T, Michiels JF, Mari B, Crénesse D, Hofman P, de Blic J, Castillo L, Albertini M, Barbry P

Epithelial cell contribution to the natural history of childhood allergic respiratory disease remains poorly understood. Our aims were to identify epithelial pathways that are dysregulated in different phenotypes of respiratory allergy. We established gene expression signatures of nasal brushings from children with dust mite-allergic rhinitis, associated or not associated with controlled or uncontrolled asthma. Supervised learning and unsupervised clustering were used to predict the different subgroups of patients and define altered signalling pathways. These profiles were compared with those of primary cultures of human nasal epithelial cells stimulated with either interleukin (IL)-4, IL-13, interferon (IFN)-α, IFN-β or IFN-γ, or during in vitro differentiation. A supervised method discriminated children with allergic rhinitis from healthy controls (prediction accuracy 91%), based on 61 transcripts, including 21 T-helper cell (Th) type 2-responsive genes. This method was then applied to predict children with controlled or uncontrolled asthma (prediction accuracy 75%), based on 41 transcripts: nine of them, which were down-regulated in uncontrolled asthma, are directly linked to IFN. This group also included GSDML, which is genetically associated with asthma. Our data revealed a Th2-driven epithelial phenotype common to all children with dust mite allergic rhinitis. It highlights the influence of epithelially expressed molecules on the control of asthma, in association with atopy and impaired viral response.


56. A defect of the INK4-Cdk4 checkpoint and Myc collaborate in blastoid mantle cell lymphoma-like lymphoma formation in mice., Am J Pathol. 2012 Apr;180(4):1688-701. doi: 10.1016/j.ajpath.2012.01.004. Epub 2012 Feb 9. (Pubmed: 22326754)
Vincent-Fabert C, Fiancette R, Rouaud P, Baudet C, Truffinet V, Magnone V, Guillaudeau A, Cogné M, Dubus P, Denizot Y

Mantle cell lymphoma (MCL) is a B-cell malignancy characterized by a monoclonal proliferation of lymphocytes with the co-expression of CD5 and CD43, but not of CD23. Typical MCL is associated with overexpression of cyclin D1, and blastoid MCL variants are associated with Myc (alias c-myc) translocations. In this study, we developed a murine model of MCL-like lymphoma by crossing Cdk4(R24C) mice with Myc-3'RR transgenic mice. The Cdk4(R24C) mouse is a knockin strain that expresses a Cdk4 protein that is resistant to inhibition by p16(INK4a) as well as other INK4 family members. Ablation of INK4 control on Cdk4 does not affect lymphomagenesis, B-cell maturation, and functions in Cdk4(R24C) mice. Additionally, B cells were normal in numbers, cell cycle activity, mitogen responsiveness, and Ig synthesis in response to activation. By contrast, breeding Cdk4(R24C) mice with Myc-3'RR transgenic mice prone to develop aggressive Burkitt lymphoma-like lymphoma (CD19(+)IgM(+)IgD(+) cells) leads to the development of clonal blastoid MCL-like lymphoma (CD19(+)IgM(+)CD5(+)CD43(+)CD23(-) cells) in Myc/Cdk4(R24C) mice. Western blot analysis revealed high amounts of Cdk4/cyclin D1 complexes as the main hallmark of these lymphomas. These results indicate that although silent in nonmalignant B cells, a defect in the INK4-Cdk4 checkpoint can participate in lymphomagenesis in conjunction with additional alterations of cell cycle control, a situation that might be reminiscent of the development of human blastoid MCL.


57. Global gene expression profiling of Ehrlichia ruminantium at different stages of development., FEMS Immunol Med Microbiol. 2012 Feb;64(1):66-73. doi: 10.1111/j.1574-695X.2011.00901.x. Epub 2011 Dec 8. (Pubmed: 22098128)
Pruneau L, Emboulé L, Gely P, Marcelino I, Mari B, Pinarello V, Sheikboudou C, Martinez D, Daigle F, Lefrançois T, Meyer DF, Vachiery N

Ehrlichia ruminantium (ER), the causative agent of heartwater on ruminants, is an obligate intracellular bacterium transmitted by ticks of the genus Amblyomma. Previous studies have shown that early stages of development may be critical for Ehrlichia pathogenicity. To gain insights into the biology of intracellular ER, we determined the genome-wide transcriptional profile of ER replicating inside bovine aortic endothelial cells using DNA microarrays. At intermediate and late stages of infection (reticulate and elementary bodies, respectively), a total of 54 genes were differentially expressed. Among them, we measured by q-RTPCR the overexpression of 11 of 14 genes. A number of genes involved in metabolism, nutrient exchange, and defense mechanisms, including those involved in resistance to oxidative stress, were significantly induced in ER reticulate bodies. This is consistent with the oxidative stress condition and nutrient starvation that seem to occur in Ehrlichia-containing vacuoles. During the lysis stage of development, when ER is infectious, we showed the overexpression of a transcription factor, dksA, which is also known to induce virulence in other pathogens such as Salmonella typhimurium. Our results suggest a possible role of these genes in promoting ER development and pathogenicity.


58. A p53 defect sensitizes various stages of B cell development to lymphomagenesis in mice carrying an IgH 3' regulatory region-driven c-myc transgene., J Immunol. 2011 Dec 1;187(11):5772-82. doi: 10.4049/jimmunol.1102059. Epub 2011 Oct 28. (Pubmed: 22039300)
Fiancette R, Rouaud P, Vincent-Fabert C, Laffleur B, Magnone V, Cogné M, Denizot Y

Although c-myc is classically described as the driving oncogene in Burkitt's lymphoma (BL), deregulation and mutations of c-myc have been reported in multiple solid tumors and in other mature B cell malignancies such as mantle cell lymphoma (MCL), myeloma, and plasma cell lymphoma (PCL). After translocation into the IgH locus, c-myc is constitutively expressed under the control of active IgH enhancers. Those located in the IgH 3' regulatory region (3'RR) are master control elements of class switch recombination and of the transcriptional burst associated with plasma cell differentiation. c-myc-3'RR mice are prone to lymphomas with rather homogeneous, most often BL-like, phenotypes with incomplete penetrance (75% tumor incidence) and long latencies (10-12 mo). To reproduce c-myc-induced mature B cell lymphomagenesis in the context of an additional defect often observed in human lymphomas, we intercrossed c-myc-3'RR with p53(+/-) mice. Double transgenic c-myc-3'RR/p53(+/-) mice developed lymphoma with short latency (2-4 mo) and full penetrance (100% tumor incidence). The spectrum of B lymphomas occurring in c-myc-3'RR/p53(+/-) mice was widened, including nonactivated (CD43(-)) BL, activated (CD43(+)) BL, MCL-like lymphoma, and PCL, thus showing that 3'RR-mediated deregulation of c-myc can promote various types of B lymphoproliferation in cells that first acquired a p53 defect. c-myc/p53(+/-) mice closely reproduce many features of BL, MCL, and PCL and provide a novel and efficient model to dissect the molecular events leading to c-myc-induced lymphomagenesis and an important tool to test potential therapeutic agents on malignant B cells featuring various maturation stages.


59. Genomotyping of Coxiella burnetii using microarrays reveals a conserved genomotype for hard tick isolates., PLoS One. 2011;6(10):e25781. Epub 2011 Oct 25. (Pubmed: 22046248)
Leroy Q, Armougom F, Barbry P, Raoult D

C. burnetii is a Gram-negative intracellular Y-proteobacteria that causes the zoonotic disease Q fever. Q fever can manifest as an acute or chronic illness. Different typing methods have been previously developed to classify C. burnetii isolates to explore its pathogenicity. Here, we report a comprehensive genomotyping method based on the presence or absence of genes using microarrays. The genomotyping method was then tested in 52 isolates obtained from different geographic areas, different hosts and patients with different clinical manifestations. The analysis revealed the presence of 10 genomotypes organized into 3 groups, with a topology congruent with that obtained through multi-spacer typing. We also found that only 4 genomotypes were specifically associated with acute Q fever, whereas all of the genomotypes could be associated to chronic human infection. Serendipitously, the genomotyping results revealed that all hard tick isolates, including the Nine Mile strain, belong to the same genomotype.


60. CYR61 downregulation reduces osteosarcoma cell invasion, migration, and metastasis., J Bone Miner Res. 2011 Jul;26(7):1533-42. doi: 10.1002/jbmr.343. (Pubmed: 21312266)
Fromigue O, Hamidouche Z, Vaudin P, Lecanda F, Patino A, Barbry P, Mari B, Marie PJ

Osteosarcoma is the most common primary tumor of bone. The rapid development of metastatic lesions and resistance to chemotherapy remain major mechanisms responsible for the failure of treatments and the poor survival rate for patients. We showed previously that the HMGCoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibitor statin exhibits antitumoral effects on osteosarcoma cells. Here, using microarray analysis, we identify Cyr61 as a new target of statins. Transcriptome and molecular analyses revealed that statins downregulate Cyr61 expression in human and murine osteosarcoma cells. Cyr61 silencing in osteosarcoma cell lines enhanced cell death and reduced cell migration and cell invasion compared with parental cells, whereas Cyr61 overexpression had opposite effects. Cyr61 expression was evaluated in 231 tissue cores from osteosarcoma patients. Tissue microarray analysis revealed that Cyr61 protein expression was higher in human osteosarcoma than in normal bone tissue and was further increased in metastatic tissues. Finally, tumor behavior and metastasis occurrence were analyzed by intramuscular injection of modified osteosarcoma cells into BALB/c mice. Cyr61 overexpression enhanced lung metastasis development, whereas cyr61 silencing strongly reduced lung metastases in mice. The results reveal that cyr61 expression increases with tumor grade in human osteosarcoma and demonstrate that cyr61 silencing inhibits in vitro osteosarcoma cell invasion and migration as well as in vivo lung metastases in mice. These data provide a novel molecular target for therapeutic intervention in metastatic osteosarcoma.


61. Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications., PLoS Genet. 2011 Jul;7(7):e1002187. doi: 10.1371/journal.pgen.1002187. Epub 2011 Jul 21. (Pubmed: 21811417)
Ganot P, Moya A, Magnone V, Allemand D, Furla P, Sabourault C

Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K-dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the symbiotic state and in the gastroderm. Our results thus offer new insight into the inter-partner signaling required for the physiological mechanisms of the symbiosis that is crucial for coral health.


62. Coxiella burnetii transcriptional analysis reveals serendipity clusters of regulation in intracellular bacteria., PLoS One. 2010 Dec 21;5(12):e15321. (Pubmed: 21203564)
Leroy Q, Lebrigand K, Armougom F, Barbry P, Thiéry R, Raoult D

Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is mainly transmitted to humans through an aerosol route. A spore-like form allows C. burnetii to resist different environmental conditions. Because of this, analysis of the survival strategies used by this bacterium to adapt to new environmental conditions is critical for our understanding of C. burnetii pathogenicity. Here, we report the early transcriptional response of C. burnetii under temperature stresses. Our data show that C. burnetii exhibited minor changes in gene regulation under short exposure to heat or cold shock. While small differences were observed, C. burnetii seemed to respond similarly to cold and heat shock. The expression profiles obtained using microarrays produced in-house were confirmed by quantitative RT-PCR. Under temperature stresses, 190 genes were differentially expressed in at least one condition, with a fold change of up to 4. Globally, the differentially expressed genes in C. burnetii were associated with bacterial division, (p)ppGpp synthesis, wall and membrane biogenesis and, especially, lipopolysaccharide and peptidoglycan synthesis. These findings could be associated with growth arrest and witnessed transformation of the bacteria to a spore-like form. Unexpectedly, clusters of neighboring genes were differentially expressed. These clusters do not belong to operons or genetic networks; they have no evident associated functions and are not under the control of the same promoters. We also found undescribed but comparable clusters of regulation in previously reported transcriptomic analyses of intracellular bacteria, including Rickettsia sp. and Listeria monocytogenes. The transcriptomic patterns of C. burnetii observed under temperature stresses permits the recognition of unpredicted clusters of regulation for which the trigger mechanism remains unidentified but which may be the result of a new mechanism of epigenetic regulation.


63. Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers., Oncogene. 2010 Sep 16;29(37):5171-81. (Pubmed: 20581866)
Caron C, Lestrat C, Marsal S, Escoffier E, Curtet S, Virolle V, Barbry P, Debernardi A, Brambilla C, Brambilla E, Rousseaux S, Khochbin S

Cancer cells frequently express genes normally active in male germ cells. ATAD2 is one of them encoding a conserved factor harbouring an AAA type ATPase domain and a bromodomain. We show here that ATAD2 is highly expressed in testis as well as in many cancers of different origins and that its high expression is a strong predictor of rapid mortality in lung and breast cancers. These observations suggest that ATAD2 acts on upstream and basic cellular processes to enhance oncogenesis in a variety of unrelated cell types. Accordingly, our functional studies show that ATAD2 controls chromatin dynamics, genome transcriptional activities and apoptotic cell response. We could also highlight some of the important intrinsic properties of its two regulatory domains, including a functional cross-talk between the AAA ATPase domain and the bromodomain. Altogether, these data indicate that ATAD2 overexpression in somatic cells, by acting on basic properties of chromatin, may contribute to malignant transformation.


64. Gene expression profiling of imatinib and PD166326-resistant CML cell lines identifies Fyn as a gene associated with resistance to BCR-ABL inhibitors., Mol Cancer Ther. 2009 Jul;8(7):1924-33. Epub 2009 Jun 30. (Pubmed: 19567819)
Grosso S, Puissant A, Dufies M, Colosetti P, Jacquel A, Lebrigand K, Barbry P, Deckert M, Cassuto JP, Mari B, Auberger P

Imatinib is used to treat chronic myelogenous leukemia (CML), but resistance develops in all phases of this disease. The purpose of the present study was to identify the mode of resistance of newly derived imatinib-resistant (IM-R) and PD166326-resistant (PD-R) CML cells. IM-R and PD-R clones exhibited an increase in viability and a decrease in caspase activation in response to various doses of imatinib and PD166326, respectively, as compared with parental K562 cells. Resistance involved neither mutations in BCR-ABL nor increased BCR-ABL, MDR1 or Lyn expression, all known modes of resistance. To gain insight into the resistance mechanisms, we used pangenomic microarrays and identified 281 genes modulated in parental versus IM-R and PD-R cells. The gene signature was similar for IM-R and PD-R cells, accordingly with the cross-sensitivity observed for both inhibitors. These genes were functionally associated with pathways linked to development, cell adhesion, cell growth, and the JAK-STAT cascade. Especially relevant were the increased expression of the tyrosine kinases AXL and Fyn as well as CD44 and HMGA2. Small interfering RNA experiments and pharmacologic approaches identified FYN as a candidate for resistance to imatinib. Our findings provide a comprehensive picture of the transcriptional events associated with imatinib and PD166326 resistance and identify Fyn as a new potential target for therapeutic intervention in CML.


65. Global analysis of DNA methylation and transcription of human repetitive sequences., Epigenetics. 2009 Jul 17;4(5). (Pubmed: 19633427)
Horard B, Eymery A, Fourel G, Vassetzky N, Puechberty J, Roizes G, Lebrigand K, Barbry P, Laugraud A, Gautier C, Simon EB, Devaux F, Magdinier F, Vourc'h C, Gilson E

Half of the human genome consists of repetitive DNA sequences. Recent studies in various organisms highlight the role of chromatin regulation of repetitive DNA in gene regulation as well as in maintainance of chromosomes and genome integrity. Hence, repetitive DNA sequences might be potential "sensors" for chromatin changes associated with pathogenesis. Therefore, we developed a new genomic tool called RepArray. RepArray is a repeat-specific microarray composed of a representative set of human repeated sequences including transposon-derived repeats, simple sequences repeats, tandemly repeated sequences such as centromeres and telomeres. We showed that combined to anti-methylcytosine immunoprecipitation assay, the RepArray can be used to generate repeat-specific methylation maps. Using cell lines impaired chemically or genetically for DNA methyltransferases activities, we were able to distinguish different epigenomes demonstrating that repeats can be used as markers of genome-wide methylation changes. Besides, using a well-documented system model, the thermal stress, we demonstrated that RepArray is also a fast and reliable tool to obtain an overview of overall transcriptional activity on whole repetitive compartment in a given cell type. Thus, the RepArray represents the first valuable tool for systematic and genome-wide analyses of the methylation and transcriptional status of the repetitive counterpart of the human genome.


66. Genetic differences among Staphylococcus aureus isolates from dairy ruminant species: a single-dye DNA microarray approach, Vet Microbiol 133, 105-114 (Pubmed: 18640795)
Vautor E, Magnone V, Rios G, Le Brigand K, Bergonier D, Lina G, Meugnier H, Barbry P, Thiery R, Pepin M

Staphylococcus aureus is recognized worldwide as a major pathogen causing clinical or subclinical intramammary infections in lactating sheep, goats and cows. The present study was carried out to compare 65 S. aureus isolates mainly obtained from nasal carriage and subclinical mastitis in dairy sheep and 43 isolates obtained from subclinical mastitis from 22 goats and 21 cows. A DNA microarray, containing probes against 190 true or putative virulence factors, was used to detect the presence of the virulence genes. Their presence/absence was independently assessed by PCR for the genes of interest. Sheep isolates obtained from the nostrils or the udders did not show any significant tissue specific virulence factor. The dominant pulse-field electrophoresis profile (OV/OV'), associated with spa clonal complex spa-CC 1773, matched mainly with the agr group III and was only found in ovine and caprine isolates. This clone was more specifically characterized by the prevalence of the following virulence genes: lpl4, ssl6, bsaA1, bsaB, bsaP, SAV0812. Moreover, seven virulence-associated genes (lpl1, sel, sec, tst, lukF-PV-like component, lukM, SAV0876) were associated with isolates from small ruminants, while the egc cluster, fhuD1, abiF and SAV2496 with bovine isolates. This genomic study suggests the existence of lineage- and host-specific genes leading to the development of host-specific pathogenic traits of S. aureus isolates.


67. Gene expression profiling of human liver transplants identifies an early transcriptional signature associated with initial poor graft function., Am J Transplant. 2008 Jun;8(6):1221-36. (Pubmed: 18522548)
Defamie V, Cursio R, Le Brigand K, Moreilhon C, Saint-Paul MC, Laurens M, Crenesse D, Cardinaud B, Auberger P, Gugenheim J, Barbry P, Mari B

Liver ischemia-reperfusion injury occurring in orthotopic liver transplantation (OLT) may be responsible for early graft failure. Molecular mechanisms underlying initial poor graft function (IPGF) have been poorly documented in human. The purpose of this study was to identify the major transcriptional alterations occurring in human livers during OLT. Twenty-one RNA extracts derived from liver transplant biopsies taken after graft reperfusion were compared with 7 RNA derived from normal control livers. Three hundred seventy-one genes were significantly modulated and classified in molecular pathways relevant to liver metabolism, inflammatory response, cell proliferation and liver protection. Grafts were then subdivided into two groups based on their peak levels of serum aspartate amino transferase within 72 h after OLT (group 1, non-IPGF: 14 patients; group 2, IPGF: 7 patients). The two corresponding data sets were compared using a supervised prediction method. A new set of genes able to correctly classify 71% of the patients was defined. These genes were functionally associated with oxidative stress, inflammation and inhibition of cell proliferation. This study provides a comprehensive picture of the transcriptional events associated with human OLT and IPGF. We anticipate that such alterations provide a framework for the elucidation of the molecular mechanisms leading to IPGF.


68. Accelerated arterial stiffening and gene expression profile of the aorta in patients with coronary artery disease., J Hypertens. 2008 Apr;26(4):747-57 (Pubmed: 18327085)
Fassot C, Briet M, Rostagno P, Barbry P, Perret C, Laude D, Boutouyrie P, Bozec E, Bruneval P, Latremouille C, Laurent S

Hypertension and chronic renal failure (CRF) are considered models of accelerated arterial stiffening. Arterial stiffness increases further when CRF is associated with hypertension. We hypothesized that, in patients with mild CRF, aortic gene expression profile would include genes involved in arterial calcifications and enlargement. METHOD: We analysed human aorta with the 'GeneChip Microarray' technology, in patients with or without CRF, scheduled for a coronary artery bypass graft. RESULTS: Nine of 25 patients had high-quality RNA and were included in the study. Among the 101 transcripts differentially expressed between CRF patients and controls, 97 transcripts were overexpressed in CRF patients. Two genes had the highest overexpression in CRF patients: lumican (LUM), involved in the regulation of collagen fibrillogenesis; and ornithine decarboxylase (ODC1), involved in polyamine biosynthesis, smooth muscle cell growth and proliferation. Immunohistochemical staining revealed an increased amount of LUM and ODC1 in the vascular smooth muscle cells (VSMCs) of CRF compared to non-CRF aortic sections. Eight genes were implicated in the regulation of the cytoskeleton (including capping protein muscle Z-line 1 alpha and moesin) and cell migration, and five genes were implicated in extracellular matrix function and apoptosis. A trend towards an upregulation of candidate genes involved in arterial calcifications was observed in CRF patients, but did not reach statistical significance. Carotid-femoral pulse wave velocity was not correlated with gene expression level. CONCLUSION: In conclusion, these results show that patients at an early stage of CRF have a specific gene expression profile of aortic tissue and suggest that genes implicated in collagen fibrillogenesis, and VSMCs migration and proliferation, particularly LUM and ODC1, may play a role.


69. A comparative analysis of perturbations caused by a gene knockout, a dominant negative allele, and a set of peptide aptamers., Mol Cell Proteomics. 2007 Sep 4; (Pubmed: 17785351)
Abed N, Bickle M, Mari B, Schapira M, Sanjuan-Espana R, Robbe-Sermesant K, Moncorge O, Mouradian-Garcia S, Barbry P, Rudkin BB, Fauvarque MO, Michaud-Soret I, Colas P

The study of protein function mostly relies on perturbing regulatory networks by acting upon protein expression levels or using transdominant negative agents. Here, we used the E.coli global transcription regulator Fur (ferric uptake regulator) as a case study to compare the perturbations exerted by a gene knockout, the expression of a dominant negative allele of a gene and the expression of peptide aptamers that bind a gene product. These three perturbations caused phenotypes that differed quantitatively and qualitatively from one another. The Fur peptide aptamers inhibited the activity of their target to various extents and reduced the virulence of a pathogenic E.coli strain in Drosophila. A genome-wide transcriptome analysis revealed that the "penetrance" of a peptide aptamer was comparable to that of a dominant-negative allele but lower than the "penetrance" of the gene knockout. Our work shows that comparative analysis of phenotypic and transcriptome responses to different types of perturbation can help decipher complex regulatory networks that control various biological processes.


70. Gene expression profiling in human gastric mucosa infected with Helicobacter pylori., Mod Pathol. 2007 Sep;20(9):974-89. Epub 2007 Jul 20. (Pubmed: 17643099)
Hofman VJ, Moreilhon C, Brest PD, Lassalle S, Le Brigand K, Sicard D, Raymond J, Lamarque D, Hebuterne XA, Mari B, Barbry PJ, Hofman PM

Pathogenic mechanisms associated with Helicobacter pylori infection enhance susceptibility of the gastric epithelium to carcinogenic conversion. We have characterized the gene expression profiles of gastric biopsies from 69 French Caucasian patients, of which 43 (62%) were infected with H. pylori. The bacterium was detected in 27 of the 42 antral biopsies examined and in 16 of the 27 fundic biopsies. Infected biopsies were selected for the presence of chronic active gastritis, in absence of metaplasia and dysplasia of the gastric mucosa. Infected antral and fundic biopsies exhibited distinct transcriptional responses. Altered responses were linked with: (1) the extent of polymorphonuclear leukocyte infiltration, (2) bacterial density, and (3) the presence of the virulence factors vacA, babA2, and cagA. Robust modulation of transcripts associated with Toll-like receptors, signal transduction, the immune response, apoptosis, and the cell cycle was consistent with expected responses to Gram-negative bacterial infection. Altered expression of interferon-regulated genes (IFITM1, IRF4, STAT6), indicative of major histocompatibility complex (MHC) II-mediated and Th1-specific responses, as well as altered expression of GATA6, have previously been described in precancerous states. Upregulation of genes abundantly expressed in cancer tissues (UBD, CXCL13, LY96, MAPK8, MMP7, RANKL, CCL18) or in stem cells (IFITM1 and WFDC2) may reveal a molecular switch towards a premalignant state in infected tissues. Tissue microarray analysis of a large number of biopsies, which were either positive or negative for the cag-A virulence factor, when compared to each other and to noninfected controls, confirmed observed gene alterations at the protein level, for eight key transcripts. This study provides 'proof-of-principle' data for identifying molecular mechanisms driving H. pylori-associated carcinogenesis before morphological evidence of changes along the neoplastic progression pathway.Modern Pathology (2007) 20, 974-989; doi:10.1038/modpathol.3800930; published online 20 July 2007.


71. Relationships Between Early Inflammatory Response to Bleomycin and Sensitivity to Lung Fibrosis., Am J Respir Crit Care Med. 2007 Aug 2; (Pubmed: 17673693)
Pottier N, Chupin C, Defamie V, Cardinaud B, Sutherland R, Rios G, Gauthier F, Wolters PJ, Berthiaume Y, Barbry P, Mari B

RATIONALE. Different sensitivities to pro-fibrotic compounds such as bleomycin are observed among mouse strains. OBJECTIVES. To identify genetic factors contributing to the outcome of lung injury. METHODS. Physiological comparison of C57BL/6 sensitive and Balb/C resistant mice challenged with intra tracheal bleomycin instillation revealed several early differences: global gene expression profiles were thus established from lungs derived from the two strains, in the absence of any bleomycin administration. MEASUREMENTS AND MAIN RESULTS. Expression of 25 genes differed between the two strains. Among them, two molecules, not previously associated with pulmonary fibrosis, were identified. The first one corresponds to dipeptidyl peptidase I (DPPI), a cysteine dipeptidyl peptidase (also known as cathepsin C) essential for the activation of serine proteinases produced by immune/inflammatory cells. The second corresponds to TIMP-3, an inhibitor of matrix metalloproteases and of ADAMs such as the TNFconverting enzyme. In functional studies performed in the bleomycin induced lung fibrosis model, the level of expression of these two genes was closely correlated with specific early events associated with lung fibrosis, namely activation of PMN-derived serine proteases and TNFalpha-dependent inflammatory syndrome. Surprisingly, genetic deletion of DPPI in the context of a C57BL/6 genetic background did not protect against bleomycin-mediated fibrosis, suggesting additional function(s) for this key enzyme. CONCLUSIONS. This study highlights the importance of the early inflammatory events that follow bleomycin instillation in the development of lung fibrosis, and describes for the first time the roles that DPPI and TIMP-3 may play in this process.


72. The TFIID subunit TAF4 regulates keratinocyte proliferation and has cell-autonomous and non-cell-autonomous tumour suppressor activity in mouse epidermis., J Cell Sci. 2007 Aug 15;120(Pt 16):2752 (Pubmed: 17690302)
Fadloun A, D Kobi, J-C Pointud, A K Indra, M Teletin, C Bole-Feysot, B Testoni, R Mantovani, D Metzger, G Mengus,, I Davidso


73. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation., Cell. 2007 Jun 1;129(5):861-3. (Pubmed: 17540177)
Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW, Mari B, Barbry P, Newmeyer DD, Beere HM, Green DR

In cells undergoing apoptosis, mitochondrial outer-membrane permeabilization (MOMP) is followed by caspase activation promoted by released cytochrome c. Although caspases mediate the apoptotic phenotype, caspase inhibition is generally not sufficient for survival following MOMP; instead cells undergo a "caspase-independent cell death" (CICD). Thus, MOMP may represent a point of commitment to cell death. Here, we identify glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a critical regulator of CICD. GAPDH-expressing cells preserved their clonogenic potential following MOMP, provided that caspase activation was blocked. GAPDH-mediated protection of cells from CICD involved an elevation in glycolysis and a nuclear function that correlated with and was replaced by an increase in Atg12 expression. Consistent with this, protection from CICD reflected an increase in and a dependence upon autophagy, associated with a transient decrease in mitochondrial mass. Therefore, GAPDH mediates an elevation in glycolysis and enhanced autophagy that cooperate to protect cells from CICD.


74. Sensing radiosensitivity of human epidermal stem cells., Radiother Oncol. 2007 Jun;83(3):267-76. Epub 2007 May 30. (Pubmed: 17540468)
Rachidi W, Harfourche G, Lemaitre G, Amiot F, Vaigot P, Martin MT

PURPOSE: Radiosensitivity of stem cells is a matter of debate. For mouse somatic stem cells, both radiosensitive and radioresistant stem cells have been described. By contrast, the response of human stem cells to radiation has been poorly studied. As epidermis is a radiosensitive tissue, we evaluated in the present work the radiosensitivity of cell populations enriched for epithelial stem cells of human epidermis. METHODS AND MATERIALS: The total keratinocyte population was enzymatically isolated from normal human skin. We used flow cytometry and antibodies against cell surface markers to isolate basal cell populations from human foreskin. Cell survival was measured after a dose of 2Gy with the XTT assay at 72h after exposure and with a clonogenic assay at 2 weeks. Transcriptome analysis using oligonucleotide microarrays was performed to assess the genomic cell responses to radiation. RESULTS: Cell sorting based on two membrane proteins, alpha6 integrin and the transferrin receptor CD71, allowed isolation of keratinocyte populations enriched for the two types of cells found in the basal layer of epidermis: stem cells and progenitors. Both the XTT assay and the clonogenic assay showed that the stem cells were radioresistant whereas the progenitors were radiosensitive. We made the hypothesis that upstream DNA damage signalling might be different in the stem cells and used microarray technology to test this hypothesis. The stem cells exhibited a much more reduced gene response to a dose of 2Gy than the progenitors, as we found that 6% of the spotted genes were regulated in the stem cells and 20% in the progenitors. Using Ingenuity Pathway Analysis software, we found that radiation exposure induced very specific pathways in the stem cells. The most striking responses were the repression of a network of genes involved in apoptosis and the induction of a network of cytokines and growth factors. CONCLUSION: These results show for the first time that keratinocyte populations enriched for stem cells from human epidermis are radioresistant. Based on both repressed and induced genes, we found that the major response of the irradiated stem cell population was the regulation of genes functionally related to cell death, cell survival and apoptosis.


75. Transcriptional signature of epidermal keratinocytes subjected to in vitro scratch wounding, reveals selective roles for ERK1/2, P38 and PI3K signalling pathways., J Biol Chem. 2007 May 18;282(20):15090-102. (Pubmed: 17363378)
Fitsialos G, Chassot AA, Turchi L, Dayem MA, Lebrigand K, Moreilhon C, Meneguzzi G, Busca R, Mari B, Barbry P, Ponzio G

Covering denuded dermal surfaces after injury requires migration, proliferation and differentiation of skin keratinocytes. To clarify the major traits controlling these intermingled biological events, we surveyed the genomic modifications occurring during the course of a scratch wound closure of cultured human keratinocytes. Using a DNA microarray approach, we report the identification of 161 new markers of epidermal repair. Expression data, combined with functional analysis performed with specific inhibitors of ERK, p38[MAPK] and PI3 kinases, demonstrate that kinase pathways exert very selective functions by precisely controlling the expression of specific genes. Inhibition of the ERK pathway totally blocks the wound closure and inactivates many early transcription factors and EGF-type growth factors. P38[MAPK] inhibition only delays "healing", probably in line with the control of genes involved in the propagation of injury-initiated signalling. In contrast, PI3 kinase inhibition accelerates the scratch closure and potentiates the scratch-dependent stimulation of three genes related to epithelial cell transformation, namely HAS3, HBEGF and Ets1. Our results define in vitro human keratinocyte wound closure as a repair process resulting from a fine balance between positive signals controlled by ERK and p38[MAPK], and negative ones triggered by PI3 kinase. The perturbation of any of these pathways might lead to dysfunction in the healing process, similar to those observed in pathological wounding phenotypes, such as hypertrophic scars or keloids.


76. Mediante: a Web-based Microarray Data manager, Bioinformatics, doi:10.1093/bioinformatics/btm106 (Pubmed: 16855282)
Le Brigand K, Barbry P

Summary : Mediante is a MIAME-compliant microarray data manager that links together annotations and experimental data. Developed as a J2EE three-tier application, Mediante integrates a management system for production of long oligonucleotide microarrays, an experimental data repository suitable for home made or commercial microarrays, and a user interface dedicated to the management of microarrays projects. Several tools allow quality control of hybridizations and submission of validated data to public repositories.
Availability : http://www.microarray.fr.
Supplementary data : http://www.microarray.fr/SP/lebrigand2007/


77. Mycobacterial lipomannan induces granuloma macrophage fusion via a TLR2-dependent, ADAM9- and beta1 integrin-mediated pathway., J Immunol. 2007 Mar 1;178(5):3161-9. (Pubmed: 17312164)
Puissegur MP, Lay G, Gilleron M, Botella L, Nigou J, Marrakchi H, Mari B, Duteyrat JL, Guerardel Y, Kremer L, Barbry P, Puzo G, Altare F

Tuberculous granulomas are the sites of interaction between the host response and the tubercle bacilli within infected individuals. They mainly consist of organized aggregations of lymphocytes and macrophages (Mf). A predominant role of mycobacterial envelope glycolipids in granulomas formation has been recently emphasized, yet the signaling events interfering with granuloma cell differentiation remain elusive. To decipher this molecular machinery, we have recently developed an in vitro human model of mycobacterial granulomas. In this study, we provide evidence that the mycobacterial proinflammatory phosphatidyl-myo-inositol mannosides and lipomannans (LM), as well as the anti-inflammatory lipoarabinomannan induce granuloma formation, yet only the proinflammatory glycolipids induce the fusion of granuloma Mf into multinucleated giant cells (MGC). We also demonstrate that LM induces large MGC resembling those found in vivo within the granulomas of tuberculosis patients, and that this process is mediated by TLR2 and is dependent on the beta(1) integrin/ADAM9 cell fusion machinery. Our results demonstrate for the first time that the Mf differentiation stage specifically occurring within granulomatous structures (i.e., MGC formation) is triggered by mycobacterial envelope glycolipids, which are capable of inducing the cell fusion machinery. This provides the first characterization of the ontogeny of human granuloma MGC, thus resulting in a direct modulation by a particular mycobacterial envelope glycolipid of the differentiation process of granuloma Mf.


78. Molecular basis of Tropheryma whipplei doxycycline susceptibility examined by transcriptional profiling., J Antimicrob Chemother. 2007 Mar;59(3):370-7. Epub 2007 Feb 8. (Pubmed: 17289769)
Van La M, Barbry P, Raoult D, Renesto P

Objectives and methods Tropheryma whipplei is a poorly studied bacterium responsible for Whipple's disease. In this study, its susceptibility to doxycycline was investigated at a transcriptional level using a whole-genome DNA microarray. Results Exposure of T. whipplei to the MIC of doxycycline (0.5 mg/L) induced antibiotic-specific primary expression profiles, while indirect effects were detected at 10 x MIC. In contrast to what was observed for several microorganisms exposed to antibiotics, the heat-shock proteins were not affected. Consistent with the mode of action of this translation inhibitor, genes encoding for ribosomal proteins and translation factors were differentially transcribed. This analysis also evidenced the regulation of genes that should account for cell growth arrest. Long-term survival of non-replicating bacteria is likely to be ensured by an increased level of ppGpp, the nucleotide effector of the stringent response. The gene expression profile observed with 10 x MIC was mainly characterized by the up-regulation of ABC transporters that possibly form efflux and detoxification systems, through which T. whipplei may limit the effects of this bacteriostatic compound. Obtained microarray data showed good agreement with real-time quantitative PCR (R(2) = 0.969). Conclusions This work represents the first comprehensive genomic approach providing insights into the expression signature triggered by the exposure of T. whipplei to antibiotics.


79. Microarray analysis of human leucocyte subsets: the advantages of positive selection and rapid purification., BMC Genomics. 2007 Mar 5;8:64 (Pubmed: 17338817)
Lyons PA, Koukoulaki M, Hatton A, Doggett K, Woffendin HB, Chaudhry AN, Smith KG

or expression profiling to have a practical impact in the management of immune-related disease it is essential that it can be applied to peripheral blood cells. Early studies have used total peripheral blood mononuclear cells, and as a consequence the majority of the disease-related signatures identified have simply reflected differences in the relative abundance of individual cell types between patients and controls. To identify cell-specific changes in transcription it would be necessary to profile purified leucocyte subsets. RESULTS: We have used sequential rounds of positive selection to isolate CD4 and CD8 T cells, CD19 B cells, CD14 monocytes and CD16 neutrophils for microarray analysis from a single blood sample. We compared gene expression in cells isolated in parallel using either positive or negative selection and demonstrate that there are no significant consistent changes due to positive selection, and that the far inferior results obtained by negative selection are largely due to reduced purity. Finally, we demonstrate that storing cells prior to separation leads to profound changes in expression, predominantly in cells of the myeloid lineage. CONCLUSION: Leukocyte subsets should be prepared for microarray analysis by rapid positive selection.


80. Expression profiling by whole-genome microarray hybridization reveals differential gene expression in breast cancer cell lines after lycopene exposure., Biochim Biophys Acta. 2007 Feb;1769(2):124-30. Epub 2007 Jan 31. (Pubmed: 17321611)
Chalabi N, Satih S, Delort L, Bignon YJ, Bernard-Gallon DJ

The correlation between diet and variation in gene-expression is an important field which could be considered to approach cancer pathways comprehension. We examined the effects of lycopene on breast cancer cell lines using pangenomic arrays. Lycopene is derived predominantly from tomatoes and tomato products and there is some epidemiologic evidence for a preventive role in breast cancer. Previously, we investigated lycopene in breast cancer using a dedicated breast cancer microarray. To confirm these results and explore pathways other than those implicated in breast cancer, for this study we used pangenomic arrays containing 25,000 oligonucleotides. This in vitro study assayed two human mammary cancer cell lines (MCF-7 and MDA-MB-231), and a fibrocystic breast cell line (MCF-10a) treated or not with 10 microM lycopene for 48 h. A competitive hybridization was performed between Cy3-labeled lycopene treated RNA and Cy5-labeled untreated RNA to define differentially expressed genes. Using t-test analysis, a subset of 391 genes was found to be differentially modulated by lycopene between estrogen-positive cells (MCF-7) and estrogen-negative cells (MDA-MB-231, MCF-10a). Hierarchical clustering revealed 726 discriminatory genes between breast cancer cell lines (MCF-7, MDA-MB-231) and the fibrocystic breast cell line (MCF-10a). Modified gene expression was observed in various molecular pathways, such as apoptosis, cell communication, MAPK and cell cycle as well as xenobiotic metabolism, fatty acid biosynthesis and gap junctional intercellular communication.


81. Omega 3 polyunsaturated fatty acids improve host response in chronic Pseudomonas aeruginosa lung infection in mice., Am J Physiol Lung Cell Mol Physiol. 2007 Feb 23 (Pubmed: 17322280)
Pierre M, Husson MO, Leberre R, Desseyn JL, Galabert C, Beghin L, Beermann C, Dagenais A, Berthiaume Y, Cardinaud B, Barbry P, Gottrand F, Guery BP

Pseudomonas aeruginosa is a Gram negative bacilli frequently encountered in human pathology. This pathogen is involved in a large number of nosocomial infections and chronic diseases. Herein we investigated the effects of polyunsaturated fatty acids (PUFA) in chronic Pseudomonas aeruginosa lung infection. C57BL/6 mice were fed for 5 weeks with specifically designed diets with high contents in either omega3, or omega6 PUFA and compared to a control diet. P. aeruginosa included in agarose beads was then instilled intratracheally and the animals studied for 7 days. On the 4(th) day, the mice fed with the omega3 diet had a higher lean body mass gain and a lower omega6/omega3 ratio of fatty acids extracted from the lung tissue compared to the other groups (p<0.05). The omega3 group had the lowest mortality. Distal alveolar fluid clearance (DAFC) as well as the inflammatory response and the cellular recruitment were higher in the omega3 group on the 4(th) day. The effect on DAFC was independent of alpha, betaENaC, and alphaNa, K-ATPase mRNA expressions, which were not altered by the different diets. In conclusion, a diet enriched in omega3 PUFA can change lung membrane composition and improve survival in chronic pneumonia. This effect on survival is probably multifactorial involving the increased DAFC capacity as well as the optimization of the initial inflammatory response. This work suggests that a better control of the omega6/omega3 PUFA balance may represent an interesting target in the prevention and/or control of P aeruginosa infection in patients. Key words: polyunsaturated fatty acids, pneumonia, pseudomonas, distal alveolar fluid clearance.


82. Easy and fast detection and genotyping of high-risk human papillomavirus by dedicated DNA microarrays., J Virol Methods. 2006 Nov;137(2):236-44. Epub 2006 Aug 1. (Pubmed: 16879879)
Albrecht V, Chevallier A, Magnone V, Barbry P, Vandenbos F, Bongain A, Lefebvre JC, Giordanengo V

Persistent cervical high-risk human papillomavirus (HPV) infection is correlated with an increased risk of developing a high-grade cervical intraepithelial lesion. A two-step method was developed for detection and genotyping of high-risk HPV. DNA was firstly amplified by asymmetrical PCR in the presence of Cy3-labelled primers and dUTP. Labelled DNA was then genotyped using DNA microarray hybridization. The current study evaluated the technical efficacy of laboratory-designed HPV DNA microarrays for high-risk HPV genotyping on 57 malignant and non-malignant cervical smears. The approach was evaluated for a broad range of cytological samples: high-grade squamous intraepithelial lesions (HSIL), low-grade squamous intraepithelial lesions (LSIL) and atypical squamous cells of high-grade (ASC-H). High-risk HPV was also detected in six atypical squamous cells of undetermined significance (ASC-US) samples; among them only one cervical specimen was found uninfected, associated with no histological lesion. The HPV oligonucleotide DNA microarray genotyping detected 36 infections with a single high-risk HPV type and 5 multiple infections with several high-risk types. Taken together, these results demonstrate the sensitivity and specificity of the HPV DNA microarray approach. This approach could improve clinical management of patients with cervical cytological abnormalities.


83. Global transcriptome analysis of Tropheryma whipplei in response to temperature stresses., J Bacteriol. 2006 Jul;188(14):5228-39. (Pubmed: 16816195)
Crapoulet N, Barbry P, Raoult D, Renesto P

Tropheryma whipplei, the agent responsible for Whipple disease, is a poorly known pathogen suspected to have an environmental origin. The availability of the sequence of the 0.92-Mb genome of this organism made a global gene expression analysis in response to thermal stresses feasible, which resulted in unique transcription profiles. A few genes were differentially transcribed after 15 min of exposure at 43 degrees C. The effects observed included up-regulation of the dnaK regulon, which is composed of six genes and is likely to be under control of two HspR-associated inverted repeats (HAIR motifs) found in the 5' region. Putative virulence factors, like the RibC and IspDF proteins, were also overexpressed. While it was not affected much by heat shock, the T. whipplei transcriptome was strongly modified following cold shock at 4 degrees C. For the 149 genes that were differentially transcribed, eight regulons were identified, and one of them was composed of five genes exhibiting similarity with genes encoding ABC transporters. Up-regulation of these genes suggested that there was an increase in nutrient uptake when the bacterium was exposed to cold stress. As observed for other bacterial species, the major classes of differentially transcribed genes encode membrane proteins and enzymes involved in fatty acid biosynthesis, indicating that membrane modifications are critical. Paradoxically, the heat shock proteins GroEL2 and ClpP1 were up-regulated. Altogether, the data show that despite the lack of classical regulation pathways, T. whipplei exhibits an adaptive response to thermal stresses which is consistent with its specific environmental origin and could allow survival under cold conditions.


84. An open-access long oligonucleotide microarray resource for analysis of the human and mouse transcriptomes., Nucleic Acids Res. 2006 Jul 19;34(12):e87 (Pubmed: 17384016)
Le Brigand K, Russell R, Moreilhon C, Rouillard JM, Jost B, Amiot F, Magnone V, Bole-Feysot C, Rostagno P, Virolle V, Defamie V, Dessen P, Williams G, Lyons P, Rios G, Mari B, Gulari E, Kastner P, Gidrol X, Freeman TC, Barbry P

Two collections of oligonucleotides have been designed for preparing pangenomic human and mouse microarrays. A total of 148,993 and 121,703 oligonucleotides were designed against human and mouse transcripts. Quality scores were created in order to select 25,342 human and 24,109 mouse oligonucleotides. They correspond to: (i) a BLAST-specificity score; (ii) the number of expressed sequence tags matching each probe; (iii) the distance to the 3' end of the target mRNA. Scores were also used to compare in silico the two microarrays with commercial microarrays. The sets described here, called RNG/MRC collections, appear at least as specific and sensitive as those from the commercial platforms. The RNG/MRC collections have now been used by an Anglo-French consortium to distribute more than 3500 microarrays to the academic community. Ad hoc identification of tissue-specific transcripts and a approximately 80% correlation with hybridizations performed on Affymetrix GeneChiptrade mark suggest that the RNG/MRC microarrays perform well. This work provides a comprehensive open resource for investigators working on human and mouse transcriptomes, as well as a generic method to generate new microarray collections in other organisms. All information related to these probes, as well as additional information about commercial microarrays have been stored in a freely-accessible database called MEDIANTE.


85. A survey of the signaling pathways involved in megakaryocytic differentiation of the human K562 leukemia cell line by molecular and c-DNA array analysis., Oncogene. 2006 Feb 2;25(5):781-94 (Pubmed: 16186797)
Jacquel A, Herrant M, Defamie V, Belhacene N, Colosetti P, Marchetti S, Legros L, Deckert M, Mari B, Cassuto JP, Hofman P, Auberger P

The K562 cell line serves as a model to study the molecular mechanisms associated with leukemia differentiation. We show here that cotreatment of K562 cells with PMA and low doses of SB202190 (SB), an inhibitor of the p38 MAPK pathway, induced a majority of cells to differentiate towards the megakaryocytic lineage. Electronic microscopy analysis showed that K562 cells treated with PMA+SB exhibited characteristic features of physiological megakaryocytic differentiation including the presence of vacuoles and demarcation membranes. Differentiation was also accompanied by a net increase in megakaryocytic markers and a reduction of erythroid markers, especially when both effectors were present. PMA effect was selectively mediated by new PKC isoforms. Differentiation of K562 cells by the combination of PMA and SB required Erk1/2 activation, a threshold of JNK activation and p38 MAPK inhibition. Interestingly, higher concentrations of SB, which drastically activated JNK, blocked megakaryocytic differentiation, and considerably increased cell death in the presence of PMA. c-DNA microarray membranes and PCR analysis allow us to identify a set of genes modulated during PMA-induced K562 cell differentiation. Several gene families identified in our screening, including ephrins receptors and some angiogenic factors, had never been reported so far to be regulated during megakaryocytic differentiation.


86. Live Staphylococcus aureus and bacterial soluble factors induce different transcriptional responses in human airway cells., Physiol Genomics. 2005 Feb 10;20(3):244-55. Epub 2004 Dec 14.Click here to read (Pubmed: 15598879)
Moreilhon C, Gras D, Hologne C, Bajolet O, Cottrez F, Magnone V, Merten M, Groux H, Puchelle E, Barbry P

To characterize the response of respiratory epithelium to infection by Staphylococcus aureus (S. aureus), human airway cells were incubated for 1 to 24 h with a supernatant of a S. aureus culture (bacterial supernatant), then profiled with a pangenomic DNA microarray. Because an upregulation of many genes was noticed around 3 h, three independent approaches were then used to characterize the host response to a 3-h contact either with bacterial supernatant or with live bacteria: 1) a DNA microarray containing 4,200 sequence-verified probes, 2) a semiquantitative RT-PCR with a set of 537 pairs of validated primers, or 3) ELISA assay of IL-8, IL-6, TNFalpha, and PGE(2). Among others, Fos, Jun, and EGR-1 were upregulated by the bacterial supernatant and by live bacteria. Increased expression of bhlhb2 and Mig-6, promoter regions which harbor HIF responding elements, was explained by an increased expression of the HIF-1alpha protein. Activation of the inducible form of cyclooxygenase, COX-2, and of the interleukins IL-1, IL-6, and IL-8, as well as of the NF-kappaB pathway, was observed preferentially in cells in contact with bacterial supernatant. Early infection was characterized by an upregulation of anti-apoptotic genes and a downregulation of pro-apoptotic genes. This correlated with a necrotic, rather than apoptotic cell death. Overall, this first global description of an airway epithelial infection by S. aureus demonstrates a larger global response to bacterial supernatant (in term of altered genes and variation factors) than to exponentially growing live bacteria.


87. Coordinated regulation of genes for secretion in tobacco at late developmental stages: association with resistance against oomycetes., Plant Physiol. 2004 Feb;134(2):858-70. Epub 2004 Feb 5. (Pubmed: 14764907)
Hugot K, Riviere MP, Moreilhon C, Dayem MA, Cozzitorto J, Arbiol G, Barbry P, Weiss C, Galiana E

Besides the systemic acquired resistance (SAR) induced in response to microbial stimulation, host plants may also acquire resistance to pathogens in response to endogenous stimuli associated with their own development. In tobacco (Nicotiana tabacum), the vegetative-to-flowering transition comes along with a susceptibility-to-resistance transition to the causal agent of black shank disease, the oomycete Phytophthora parasitica. This resistance affects infection effectiveness and hyphal expansion and is associated with extracellular accumulation of a cytotoxic activity that provokes in vitro cell death of P. parasitica zoospores. As a strategy to determine the extracellular events important for restriction of pathogen growth, we screened the tobacco genome for genes encoding secreted or membrane-bound proteins expressed in leaves of flowering plants. Using a signal sequence trap approach in yeast (Saccharomyces cerevisiae), 298 clones were selected that appear to encode for apoplastic, cell wall, or membrane-bound proteins involved in stress response, in plant defense, or in cell wall modifications. Microarray and northern-blot analyses revealed that, at late developmental stages, leaves were characterized by the coordinate up-regulation of genes involved in SAR and in peroxidative cross-linking of structural proteins to cell wall. This suggests the potential involvement of these genes in extracellular events that govern the expression of developmental resistance. The analysis of the influence of salicylic acid on mRNA accumulation also indicates a more complex network for regulation of gene expression at a later stage of tobacco development than during SAR. Further characterization of these genes will permit the formulation of hypotheses to explain resistance and to establish the connection with development.


88. Gene expression profiling of normal human pulmonary fibroblasts following coculture with non-small-cell lung cancer cells reveals alterations related to matrix degradation, angiogenesis, cell growth and survival., Oncogene. 2003 Nov 20;22(52):8487-97. (Pubmed: 14627989)
Fromigue O, Louis K, Dayem M, Milanini J, Pages G, Tartare-Deckert S, Ponzio G, Hofman P, Barbry P, Auberger P, Mari B

Increasing evidence supports a major role for the microenvironment in carcinoma formation and progression. The influence of the stroma is partly mediated by signalling between epithelial tumor cells and neighboring fibroblasts. However, the molecular mechanisms underlying these interactions are largely unknown. To mimic the initial steps of invasive carcinoma in which tumor cells come in contact with normal stromal cells, we used a coculture model of non-small-cell lung cancer tumor cells and normal pulmonary fibroblasts. Using DNA filter arrays, we first analysed the overall modification of gene expression profile after a 24 h period of coculture. Next, we focused our interest on the transcriptome of the purified fibroblastic fraction of coculture using both DNA filter arrays and a laboratory-made DNA microarray. These experiments allowed the identification of a set of modulated genes coding for growth and survival factors, angiogenic factors, proteases and protease inhibitors, transmembrane receptors, kinases and transcription regulators that can potentially affect the regulation of matrix degradation, angiogenesis, invasion, cell growth and survival. This study represents to our knowledge the first attempt to dissect early global gene transcription occurring in a tumor-stroma coculture model and should help to understand better some of the molecular mechanisms involved in heterotypic signalling between epithelial tumor cells and fibroblasts.


89. Alveolar liquid clearance and sodium channel expression are decreased in transplanted canine lungs., Am J Respir Crit Care Med. 2003 May 15;167(10):1440-50. Epub 2003 Jan 24. (Pubmed: 12738601)
Sugita M, Ferraro P, Dagenais A, Clermont ME, Barbry P, Michel RP, Berthiaume Y

To determine the impact of transplantation-associated injury on the clearance mechanisms of pulmonary edema, we created a canine single lung transplant model. After 3 hours of preservation and 4 hours of reperfusion, right native lungs and left transplanted lungs were used to measure alveolar liquid clearance (ALC) in ex vivo liquid-filled lung preparations. We also examined the role of the pulmonary circulation in edema clearance in in vivo liquid-filled lungs between 4 and 8 hours of reperfusion. To study molecular modifications in ALC, we also measured expression levels of the epithelial sodium channel (ENaC) and sodium-potassium-adenosine triphosphatase (ATPase). We found that ALC was significantly lower in transplanted than in right native lungs ex vivo (p < 0.05) and that transplanted lungs did not respond to the beta-adrenergic agonist terbutaline. Our in vivo study confirmed the ex vivo results. Molecular analyses revealed that ENaC messenger RNA but not sodium-potassium-ATPase was significantly decreased in transplanted lungs (p < 0.01). Furthermore, there was a significant decrease in ENaC protein expression. Therefore, we conclude that the current investigation indicates that the lung injury caused by lung preservation and transplantation significantly reduces the edema clearance ability of transplanted lungs.


90. Early gene expression in wounded human keratinocytes revealed by DNA microarray analysis., Comp Funct Genomics. 2003;4(1):47-55. (Pubmed: 18629100)
Dayem MA, Moreilhon C, Turchi L, Magnone V, Christen R, Ponzio G, Barbry P

WOUND HEALING INVOLVES SEVERAL STEPS: spreading of the cells, migration and proliferation. We have profiled gene expression during the early events of wound healing in normal human keratinocytes with a home-made DNA microarray containing about 1000 relevant human probes. An original wounding machine was used, that allows the wounding of up to 40% of the surface of a confluent monolayer of cultured cells grown on a Petri dish (compared with 5% with a classical 'scratch' method). The two aims of the present study were: (a) to validate a limited number of genes by comparing the expression levels obtained with this technique with those found in the literature; (b) to combine the use of the wounding machine with DNA microarray analysis for large-scale detection of the molecular events triggered during the early stages of the wound-healing process. The time-courses of RNA expression observed at 0.5, 1.5, 3, 6 and 15 h after wounding for genes such as c-Fos, c-Jun, Egr1, the plasminogen activator PLAU (uPA) and the signal transducer and transcription activator STAT3, were consistent with previously published data. This suggests that our methodologies are able to perform quantitative measurement of gene expression. Transcripts encoding two zinc finger proteins, ZFP36 and ZNF161, and the tumour necrosis factor alpha-induced protein TNFAIP3, were also overexpressed after wounding. The role of the p38 mitogen-activated protein kinase (p38MAPK) in wound healing was shown after the inhibition of p38 by SB203580, but our results also suggest the existence of surrogate activating pathways.