Plateforme de génomique, IPMC UMR7275 660 Route des Lucioles, SOPHIA ANTIPOLIS, 06560 VALBONNE tél: 04-93-95-77-77, fax: 04-93-95-77-08 |
|
Expertise
La plateforme de génomique fonctionnelle de Nice Sophia Antipolis existe depuis 1999.
Initialement orientée vers la conception, la fabrication et l'analyse de puces à ADN, elle a contribué à ouvrir cette nouvelle technologie à
une large communauté, mettant à cette occasion en place un système d'information performant (Mediante),
capable de gérer de grandes masses de données, et fonctionnant en production depuis plus de 10 ans.
Equipements
Les résultats sont stockés automatiquement sur le portail d'informations de la plateforme Mediante. Cela concerne notamment les fichiers .BAM d'alignement, les fichiers .BW de couverture et l'ensemble des fichiers de l'analyse secondaire et des analyses statistiques conduites en partenariat avec le collaborateur. Sur demande l'ensemble des données brutes sont également mises à disposition et une aide est fournit pour la soumission des données vers la base de données publiques GEO (Gene Expression Omnibus). |
Related publicationsCardinaud Brunocardinaud@ipmc.cnrs.fr04 93 95 77 90 660 route des lucioles 06560 Valbonne - Sophia-Antipolis 12 publications found1. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines., Cell Death Dis. 2013 Mar 14;4:e544. doi: 10.1038/cddis.2013.71. (Pubmed: 23492775)Grosso S, Doyen J, Parks SK, Bertero T, Paye A, Cardinaud B, Gounon P, Lacas-Gervais S, Noel A, Pouysségur J, Barbry P, Mazure NM, Mari B The resistance of hypoxic cells to radiotherapy and chemotherapy is a major problem in the treatment of cancer. Recently, an additional mode of hypoxia-inducible factor (HIF)-dependent transcriptional regulation, involving modulation of a specific set of micro RNAs (miRNAs), including miR-210, has emerged. We have recently shown that HIF-1 induction of miR-210 also stabilizes HIF-1 through a positive regulatory loop. Therefore, we hypothesized that by stabilizing HIF-1 in normoxia, miR-210 may protect cancer cells from radiation. We developed a non-small cell lung carcinoma (NSCLC)-derived cell line (A549) stably expressing miR-210 (pmiR-210) or a control miRNA (pmiR-Ctl). The miR-210-expressing cells showed a significant stabilization of HIF-1 associated with mitochondrial defects and a glycolytic phenotype. Cells were subjected to radiation levels ranging from 0 to 10 Gy in normoxia and hypoxia. Cells expressing miR-210 in normoxia had the same level of radioresistance as control cells in hypoxia. Under hypoxia, pmiR-210 cells showed a low mortality rate owing to a decrease in apoptosis, with an ability to grow even at 10 Gy. This miR-210 phenotype was reproduced in another NSCLC cell line (H1975) and in HeLa cells. We have established that radioresistance was independent of p53 and cell cycle status. In addition, we have shown that genomic double-strand breaks (DSBs) foci disappear faster in pmiR-210 than in pmiR-Ctl cells, suggesting that miR-210 expression promotes a more efficient DSB repair. Finally, HIF-1 invalidation in pmiR-210 cells removed the radioresistant phenotype, showing that this mechanism is dependent on HIF-1. In conclusion, miR-210 appears to be a component of the radioresistance of hypoxic cancer cells. Given the high stability of most miRNAs, this advantage could be used by tumor cells in conditions where reoxygenation has occurred and suggests that strategies targeting miR-210 could enhance tumor radiosensitization. 2. "Seed-Milarity" confers to hsa-miR-210 and hsa-miR-147b similar functional activity., PLoS One. 2012;7(9):e44919. doi: 10.1371/journal.pone.0044919. Epub 2012 Sep 13. (Pubmed: 23028679) Bertero T, Grosso S, Robbe-Sermesant K, Lebrigand K, Henaoui IS, Puissegur MP, Fourre S, Zaragosi LE, Mazure NM, Ponzio G, Cardinaud B, Barbry P, Rezzonico R, Mari B Specificity of interaction between a microRNA (miRNA) and its targets crucially depends on the seed region located in its 5'-end. It is often implicitly considered that two miRNAs sharing the same biological activity should display similarity beyond the strict six nucleotide region that forms the seed, in order to form specific complexes with the same mRNA targets. We have found that expression of hsa-miR-147b and hsa-miR-210, though triggered by different stimuli (i.e. lipopolysaccharides and hypoxia, respectively), induce very similar cellular effects in term of proliferation, migration and apoptosis. Hsa-miR-147b only shares a "minimal" 6-nucleotides seed sequence with hsa-miR-210, but is identical with hsa-miR-147a over 20 nucleotides, except for one base located in the seed region. Phenotypic changes induced after heterologous expression of miR-147a strikingly differ from those induced by miR-147b or miR-210. In particular, miR-147a behaves as a potent inhibitor of cell proliferation and migration. These data fit well with the gene expression profiles observed for miR-147b and miR-210, which are very similar, and the gene expression profile of miR-147a, which is distinct from the two others. Bioinformatics analysis of all human miRNA sequences indicates multiple cases of miRNAs from distinct families exhibiting the same kind of similarity that would need to be further characterized in terms of putative functional redundancy. Besides, it implies that functional impact of some miRNAs can be masked by robust expression of miRNAs belonging to distinct families. 3. Can the microRNA signature distinguish between thyroid tumors of uncertain malignant potential and other well-differentiated tumors of the thyroid gland?, Endocr Relat Cancer. 2011 Sep 13;18(5):579-94. Print 2011 Oct. (Pubmed: 21778212) Lassalle S, Hofman V, Ilie M, Bonnetaud C, Puisségur MP, Brest P, Loubatier C, Guevara N, Bordone O, Cardinaud B, Lebrigand K, Rios G, Santini J, Franc B, Mari B, Al Ghuzlan A, Vielh P, Barbry P, Hofman P The term 'thyroid tumors of uncertain malignant potential' (TT-UMP) was coined by surgical pathologists to define well-differentiated tumors (WDT) showing inconclusive morphological evidence of malignancy or benignity. We have analyzed the expression of microRNA (miRNA) in a training set of 42 WDT of different histological subtypes: seven follicular tumors of UMP (FT-UMP), six WDT-UMP, seven follicular thyroid adenomas (FTA), 11 conventional papillary thyroid carcinomas (C-PTC), five follicular variants of PTC (FV-PTC), and six follicular thyroid carcinomas (FTC), which led to the identification of about 40 deregulated miRNAs. A subset of these altered miRNAs was independently validated by qRT-PCR, which included 18 supplementary TT-UMP (eight WDT-UMP and ten FT-UMP). Supervised clustering techniques were used to predict the first 42 samples. Based on the four possible outcomes (FTA, C-PTC, FV-PTC, and FTC), about 80% of FTA and C-PTC and 50% of FV-PTC and FTC samples were correctly assigned. Analysis of the independent set of 18 WDT-UMP by quantitative RT-PCR for the selection of the six most discriminating miRNAs was unable to separate FT-UMP from WDT-UMP, suggesting that the miRNA signature is insufficient in characterizing these two clinical entities. We conclude that considering FT-UMP and WDT-UMP as distinct and specific clinical entities may improve the diagnosis of WDT of the thyroid gland. In this context, a small set of miRNAs (i.e. miR-7, miR-146a, miR-146b, miR-200b, miR-221, and miR-222) appears to be useful, though not sufficient per se, in distinguishing TT-UMP from other WDT of the thyroid gland. 4. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway., Nat Cell Biol. 2011 Jun;13(6):693-9. Epub 2011 May 22. (Pubmed: 21602795) Marcet B, Chevalier B, Luxardi G, Coraux C, Zaragosi LE, Cibois M, Robbe-Sermesant K, Jolly T, Cardinaud B, Moreilhon C, Giovannini-Chami L, Nawrocki-Raby B, Birembaut P, Waldmann R, Kodjabachian L, Barbry P Multiciliated cells lining the surface of some vertebrate epithelia are essential for various physiological processes, such as airway cleansing. However, the mechanisms governing motile cilia biosynthesis remain poorly elucidated. We identify miR-449 microRNAs as evolutionarily conserved key regulators of vertebrate multiciliogenesis. In human airway epithelium and Xenopus laevis embryonic epidermis, miR-449 microRNAs strongly accumulated in multiciliated cells. In both models, we show that miR-449 microRNAs promote centriole multiplication and multiciliogenesis by directly repressing the Delta/Notch pathway. We established Notch1 and its ligand Delta-like 1(DLL1) as miR-449 bona fide targets. Human DLL1 and NOTCH1 protein levels were lower in multiciliated cells than in surrounding cells, decreased after miR-449 overexpression and increased after miR-449 inhibition. In frog, miR-449 silencing led to increased Dll1 expression. Consistently, overexpression of Dll1 mRNA lacking miR-449 target sites repressed multiciliogenesis, whereas both Dll1 and Notch1 knockdown rescued multiciliogenesis in miR-449-deficient cells. Antisense-mediated protection of miR-449-binding sites of endogenous human Notch1 or frog Dll1 strongly repressed multiciliogenesis. Our results unravel a conserved mechanism whereby Notch signalling must undergo miR-449-mediated inhibition to permit differentiation of ciliated cell progenitors. 5. Impact of microRNA in normal and pathological respiratory epithelia., Methods Mol Biol. 2011;741:171-91. (Pubmed: 21594785) Giovannini-Chami L, Grandvaux N, Zaragosi LE, Robbe-Sermesant K, Marcet B, Cardinaud B, Coraux C, Berthiaume Y, Waldmann R, Mari B, Barbry P Extensive sequencing efforts, combined with ad hoc bioinformatics developments, have now led to the identification of 1222 distinct miRNAs in human (derived from 1368 distinct genomic loci) and of many miRNAs in other multicellular organisms. The present chapter is aimed at describing a general experimental strategy to identify specific miRNA expression profiles and to highlight the functional networks operating between them and their mRNA targets, including several miRNAs deregulated in cystic fibrosis and during differentiation of airway epithelial cells. 6. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity., Cell Death Differ. 2010 Oct 1. (Pubmed: 20885442) Puissegur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K, Maurin T, Lebrigand K, Cardinaud B, Hofman V, Fourre S, Magnone V, Ricci JE, Pouyssegur J, Gounon P, Hofman P, Barbry P, Mari B Following the identification of a set of hypoxia-regulated microRNAs (miRNAs), recent studies have highlighted the importance of miR-210 and of its transcriptional regulation by the transcription factor hypoxia-inducible factor-1 (HIF-1). We report here that miR-210 is overexpressed at late stages of non-small cell lung cancer. Expression of miR-210 in lung adenocarcinoma A549 cells caused an alteration of cell viability associated with induction of caspase-3/7 activity. miR-210 induced a loss of mitochondrial membrane potential and the apparition of an aberrant mitochondrial phenotype. The expression profiling of cells overexpressing miR-210 revealed a specific signature characterized by enrichment for transcripts related to 'cell death' and 'mitochondrial dysfunction', including several subunits of the electron transport chain (ETC) complexes I and II. The transcript coding for one of these ETC components, SDHD, subunit D of succinate dehydrogenase complex (SDH), was validated as a bona fide miR-210 target. Moreover, SDHD knockdown mimicked miR-210-mediated mitochondrial alterations. Finally, miR-210-dependent targeting of SDHD was able to activate HIF-1, in line with previous studies linking loss-of-function SDH mutations to HIF-1 activation. miR-210 can thus regulate mitochondrial function by targeting key ETC component genes with important consequences on cell metabolism, survival and modulation of HIF-1 activity. These observations help explain contradictory data regarding miR-210 expression and its putative function in solid tumors. 7. miR-34b/miR-34c: a regulator of TCL1 expression in 11q- chronic lymphocytic leukaemia?, Leukemia. 2009 Nov;23(11):2174-7. (Pubmed: 19536169) Cardinaud B, Moreilhon C, Marcet B, Robbe-Sermesant K, Lebrigand K, Mari B, Eclache V, Cymbalista F, Raynaud S, Barbry P
8. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal interactions., PLoS One. 2009 Aug 24;4(8):e6718. (Pubmed: 19701459) Pottier N, Maurin T, Chevalier B, Puissegur MP, Lebrigand K, Robbe-Sermesant K, Bertero T, Lino Cardenas CL, Courcot E, Rios G, Fourre S, Lo-Guidice JM, Marcet B, Cardinaud B, Barbry P, Mari B BACKGROUND: Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-alpha, IL-1beta and TGF-beta. METHODOLOGY/PRINCIPAL FINDINGS: MiR-155 was significantly induced by inflammatory cytokines TNF-alpha and IL-1beta while it was down-regulated by TGF-beta. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to "cell to cell signalling", "cell morphology" and "cellular movement". This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3'-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest a physiological function of miR-155 in lung fibroblasts. Altogether, this study implicates this miRNA in the regulation by mesenchymal cells of surrounding lung epithelium, making it a potential key player during tissue injury. 9. Gene expression profiling of human liver transplants identifies an early transcriptional signature associated with initial poor graft function., Am J Transplant. 2008 Jun;8(6):1221-36. (Pubmed: 18522548) Defamie V, Cursio R, Le Brigand K, Moreilhon C, Saint-Paul MC, Laurens M, Crenesse D, Cardinaud B, Auberger P, Gugenheim J, Barbry P, Mari B Liver ischemia-reperfusion injury occurring in orthotopic liver transplantation (OLT) may be responsible for early graft failure. Molecular mechanisms underlying initial poor graft function (IPGF) have been poorly documented in human. The purpose of this study was to identify the major transcriptional alterations occurring in human livers during OLT. Twenty-one RNA extracts derived from liver transplant biopsies taken after graft reperfusion were compared with 7 RNA derived from normal control livers. Three hundred seventy-one genes were significantly modulated and classified in molecular pathways relevant to liver metabolism, inflammatory response, cell proliferation and liver protection. Grafts were then subdivided into two groups based on their peak levels of serum aspartate amino transferase within 72 h after OLT (group 1, non-IPGF: 14 patients; group 2, IPGF: 7 patients). The two corresponding data sets were compared using a supervised prediction method. A new set of genes able to correctly classify 71% of the patients was defined. These genes were functionally associated with oxidative stress, inflammation and inhibition of cell proliferation. This study provides a comprehensive picture of the transcriptional events associated with human OLT and IPGF. We anticipate that such alterations provide a framework for the elucidation of the molecular mechanisms leading to IPGF. 10. Relationships Between Early Inflammatory Response to Bleomycin and Sensitivity to Lung Fibrosis., Am J Respir Crit Care Med. 2007 Aug 2; (Pubmed: 17673693) Pottier N, Chupin C, Defamie V, Cardinaud B, Sutherland R, Rios G, Gauthier F, Wolters PJ, Berthiaume Y, Barbry P, Mari B RATIONALE. Different sensitivities to pro-fibrotic compounds such as bleomycin are observed among mouse strains. OBJECTIVES. To identify genetic factors contributing to the outcome of lung injury. METHODS. Physiological comparison of C57BL/6 sensitive and Balb/C resistant mice challenged with intra tracheal bleomycin instillation revealed several early differences: global gene expression profiles were thus established from lungs derived from the two strains, in the absence of any bleomycin administration. MEASUREMENTS AND MAIN RESULTS. Expression of 25 genes differed between the two strains. Among them, two molecules, not previously associated with pulmonary fibrosis, were identified. The first one corresponds to dipeptidyl peptidase I (DPPI), a cysteine dipeptidyl peptidase (also known as cathepsin C) essential for the activation of serine proteinases produced by immune/inflammatory cells. The second corresponds to TIMP-3, an inhibitor of matrix metalloproteases and of ADAMs such as the TNFconverting enzyme. In functional studies performed in the bleomycin induced lung fibrosis model, the level of expression of these two genes was closely correlated with specific early events associated with lung fibrosis, namely activation of PMN-derived serine proteases and TNFalpha-dependent inflammatory syndrome. Surprisingly, genetic deletion of DPPI in the context of a C57BL/6 genetic background did not protect against bleomycin-mediated fibrosis, suggesting additional function(s) for this key enzyme. CONCLUSIONS. This study highlights the importance of the early inflammatory events that follow bleomycin instillation in the development of lung fibrosis, and describes for the first time the roles that DPPI and TIMP-3 may play in this process. 11. Suppression of microRNA-silencing pathway by HIV-1 during virus replication., Science. 2007 Mar 16;315(5818):1579-82. (Pubmed: 17322031) Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, Lebrigand K, Cardinaud B, Maurin T, Barbry P, Baillat V, Reynes J, Corbeau P, Jeang KT, Benkirane M MicroRNAs (miRNAs) are single-stranded noncoding RNAs of 19 to 25 nucleotides that function as gene regulators and as a host cell defense against both RNA and DNA viruses. We provide evidence for a physiological role of the miRNA-silencing machinery in controlling HIV-1 replication. Type III RNAses Dicer and Drosha, responsible for miRNA processing, inhibited virus replication both in peripheral blood mononuclear cells from HIV-1-infected donors and in latently infected cells. In turn, HIV-1 actively suppressed the expression of the polycistronic miRNA cluster miR-17/92. This suppression was found to be required for efficient viral replication and was dependent on the histone acetyltransferase Tat cofactor PCAF. Our results highlight the involvement of the miRNA-silencing pathway in HIV-1 replication and latency. 12. Omega 3 polyunsaturated fatty acids improve host response in chronic Pseudomonas aeruginosa lung infection in mice., Am J Physiol Lung Cell Mol Physiol. 2007 Feb 23 (Pubmed: 17322280) Pierre M, Husson MO, Leberre R, Desseyn JL, Galabert C, Beghin L, Beermann C, Dagenais A, Berthiaume Y, Cardinaud B, Barbry P, Gottrand F, Guery BP Pseudomonas aeruginosa is a Gram negative bacilli frequently encountered in human pathology. This pathogen is involved in a large number of nosocomial infections and chronic diseases. Herein we investigated the effects of polyunsaturated fatty acids (PUFA) in chronic Pseudomonas aeruginosa lung infection. C57BL/6 mice were fed for 5 weeks with specifically designed diets with high contents in either omega3, or omega6 PUFA and compared to a control diet. P. aeruginosa included in agarose beads was then instilled intratracheally and the animals studied for 7 days. On the 4(th) day, the mice fed with the omega3 diet had a higher lean body mass gain and a lower omega6/omega3 ratio of fatty acids extracted from the lung tissue compared to the other groups (p<0.05). The omega3 group had the lowest mortality. Distal alveolar fluid clearance (DAFC) as well as the inflammatory response and the cellular recruitment were higher in the omega3 group on the 4(th) day. The effect on DAFC was independent of alpha, betaENaC, and alphaNa, K-ATPase mRNA expressions, which were not altered by the different diets. In conclusion, a diet enriched in omega3 PUFA can change lung membrane composition and improve survival in chronic pneumonia. This effect on survival is probably multifactorial involving the increased DAFC capacity as well as the optimization of the initial inflammatory response. This work suggests that a better control of the omega6/omega3 PUFA balance may represent an interesting target in the prevention and/or control of P aeruginosa infection in patients. Key words: polyunsaturated fatty acids, pneumonia, pseudomonas, distal alveolar fluid clearance. |